Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44232 by LYCON TRIX last updated on 24/Sep/18

∫_0 ^π e^(sin^2 x) Cos^3 xdx

$$\int_{\mathrm{0}} ^{\pi} \mathrm{e}^{\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \mathrm{Cos}^{\mathrm{3}} \mathrm{xdx} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Sep/18

f(x)=e^(sin^2 x) cos^3 x  f(Π−x)=e^({sin(Π−x)}^2 ) {cos(Π−x)}^3                      =e^(sin^2 x) ×(−cosx)^3                       =−f(x)  so∫_0 ^Π e^(sin^2 x) cos^3 xdx=0

$${f}\left({x}\right)={e}^{{sin}^{\mathrm{2}} {x}} {cos}^{\mathrm{3}} {x} \\ $$ $${f}\left(\Pi−{x}\right)={e}^{\left\{{sin}\left(\Pi−{x}\right)\right\}^{\mathrm{2}} } \left\{{cos}\left(\Pi−{x}\right)\right\}^{\mathrm{3}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={e}^{{sin}^{\mathrm{2}} {x}} ×\left(−{cosx}\right)^{\mathrm{3}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−{f}\left({x}\right) \\ $$ $${so}\int_{\mathrm{0}} ^{\Pi} {e}^{{sin}^{\mathrm{2}} {x}} {cos}^{\mathrm{3}} {xdx}=\mathrm{0} \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 24/Sep/18

Commented byHitarth Rana last updated on 24/Sep/18

Perfect...★★★★★

$${Perfect}...\bigstar\bigstar\bigstar\bigstar\bigstar \\ $$

Commented byLYCON TRIX last updated on 24/Sep/18

Thanks a lot gentlemen

$$\mathrm{Thanks}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{gentlemen} \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 24/Sep/18

thank you...

$${thank}\:{you}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com