Question Number 62937 by Prithwish sen last updated on 27/Jun/19 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{\:\:\mathrm{x}} \frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$ | ||
Commented bymathmax by abdo last updated on 27/Jun/19 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{{x}} \:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\left[{arctan}\left({t}\right)\right]_{\mathrm{0}} ^{{x}} \:={arctanx}\:. \\ $$ | ||
Commented byPrithwish sen last updated on 27/Jun/19 | ||
![]() | ||
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$ | ||
Commented byPrithwish sen last updated on 27/Jun/19 | ||
![]() | ||
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$ | ||
Answered by peter frank last updated on 27/Jun/19 | ||
![]() | ||
$${let}\:{x}=\mathrm{tan}\:\theta\rightarrow\theta=\mathrm{tan}^{−\mathrm{1}} {x} \\ $$ $${dx}=\mathrm{sec}\:^{\mathrm{2}} \theta{d}\theta \\ $$ $$\int\frac{\mathrm{sec}\:^{\mathrm{2}} \theta{d}\theta}{\mathrm{sec}\:^{\mathrm{2}} \theta} \\ $$ $$\theta+{c} \\ $$ $$\mathrm{tan}^{−\mathrm{1}} {x}+{c} \\ $$ $$ \\ $$ | ||
Commented byPrithwish sen last updated on 27/Jun/19 | ||
![]() | ||
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$ | ||