Question Number 100189 by Dwaipayan Shikari last updated on 25/Jun/20

∫tan^i xdx

Answered by maths mind last updated on 25/Jun/20

=∫(u^i /((1+u2)))du  =∫Σ(−1)^k u^(2k+i) du  =Σ(((−1)^k u^(2k+i+1) )/(2k+i+1))du  =u^(i+1) Σ(((−u^2 )^k )/(k!)).((k!)/(2(((i+1)/2)+k)))+c  =u^(i+1) ((1/(i+1))+Σ_(k≥1) ((k!.)/(2(k+((i+1)/2)))).(((−u^2 )^k )/(k!)))+c  =(u^(i+1) /(i+1))(1+Σ_(k≥1) ((k!.(((i+1)/2)))/((k+((i+1)/2)))).(((−u^2 )^k )/(k!)))+c  =(u^(i+1) /(i+1))(1+Σ_(k≥1) (((1)_k .(((i+1)/2))_k )/((((i+3)/2))_k )).(((−u^2 )^k )/(k!)))+c  =(u^(i+1) /(i+1))  _2 F_1 (1,((i+1)/2);((i+3)/2);−u^2 )+c  u=tan(x)  2F_1 (a,b;c;x)   hyper geometric function  (a_n )=Π_(k=0) ^(n−1) (a+k),