Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 100594 by Coronavirus last updated on 27/Jun/20

solve  the differential  equations  1-  xcos (ln (x/y))dy−ydx=0  2-  ydx+2xdy =2y((√x)/(cos^2 (y)))dy     y(0)=π

$${solve}\:\:{the}\:{differential}\:\:{equations} \\ $$$$\mathrm{1}-\:\:{x}\mathrm{cos}\:\left(\mathrm{ln}\:\frac{{x}}{{y}}\right){dy}−{ydx}=\mathrm{0} \\ $$$$\mathrm{2}-\:\:{ydx}+\mathrm{2}{xdy}\:=\mathrm{2}{y}\frac{\sqrt{{x}}}{{cos}^{\mathrm{2}} \left({y}\right)}{dy}\:\:\:\:\:{y}\left(\mathrm{0}\right)=\pi \\ $$

Answered by smridha last updated on 27/Jun/20

2.[(dx/(2(√x)))+((√x)/y)dy=sec^2 (y)dy]  mult: by y both sides and integrating  ∫d(y.(√x))=∫y.sec^2 (y)dy  ⇒y(√x)=ytan(y)+ln[cos(y)]+c  put the condition y(0)=𝛑  ⇒0=0+ln(−1)+c  so c=+_− i𝛑  so the solution   y(√x)=ytan(y)+ln[cos(y)]+_− i𝛑

$$\mathrm{2}.\left[\frac{\boldsymbol{{dx}}}{\mathrm{2}\sqrt{\boldsymbol{{x}}}}+\frac{\sqrt{\boldsymbol{{x}}}}{\boldsymbol{{y}}}\boldsymbol{{dy}}=\boldsymbol{{sec}}^{\mathrm{2}} \left(\boldsymbol{{y}}\right)\boldsymbol{{dy}}\right] \\ $$$$\boldsymbol{{mult}}:\:\boldsymbol{{by}}\:\boldsymbol{{y}}\:\boldsymbol{{both}}\:\boldsymbol{{sides}}\:\boldsymbol{{and}}\:\boldsymbol{{integrating}} \\ $$$$\int\boldsymbol{{d}}\left(\boldsymbol{{y}}.\sqrt{\boldsymbol{{x}}}\right)=\int\boldsymbol{{y}}.\boldsymbol{{sec}}^{\mathrm{2}} \left(\boldsymbol{{y}}\right)\boldsymbol{{dy}} \\ $$$$\Rightarrow\boldsymbol{{y}}\sqrt{\boldsymbol{{x}}}=\boldsymbol{{ytan}}\left(\boldsymbol{{y}}\right)+\boldsymbol{{ln}}\left[\boldsymbol{{cos}}\left(\boldsymbol{{y}}\right)\right]+\boldsymbol{{c}} \\ $$$$\boldsymbol{{put}}\:\boldsymbol{{the}}\:\boldsymbol{{condition}}\:\boldsymbol{{y}}\left(\mathrm{0}\right)=\boldsymbol{\pi} \\ $$$$\Rightarrow\mathrm{0}=\mathrm{0}+\boldsymbol{{ln}}\left(−\mathrm{1}\right)+\boldsymbol{{c}} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{c}}=\underset{−} {+}\boldsymbol{{i}\pi} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{the}}\:\boldsymbol{{solution}}\: \\ $$$$\boldsymbol{{y}}\sqrt{\boldsymbol{{x}}}=\boldsymbol{{ytan}}\left(\boldsymbol{{y}}\right)+\boldsymbol{{ln}}\left[\boldsymbol{{cos}}\left(\boldsymbol{{y}}\right)\right]\underset{−} {+}\boldsymbol{{i}\pi} \\ $$

Answered by smridha last updated on 28/Jun/20

(1).(dx/dy)=(x/(2y))[((x/y))^i +((x/y))^(−i) ]  let   (x/y)=v so (dx/dy)=v+y.(dv/dy)  now      v+y.(dv/dy)=(v/2)[((v^(2i) +1)/v^i )]  y.(dv/dy)=v[(((v^i −1)^2 )/(2v^i ))]  (dy/y)=((2v^(i−1) )/((v^i −1)^2 ))dv  integrating both sides we get..  ln(y)=2i.(1/((v^i −1)))+ln(c)  so   y=c.e^((2i)/([((x/y))^i −1]))

$$\left(\mathrm{1}\right).\frac{\boldsymbol{{dx}}}{\boldsymbol{{dy}}}=\frac{\boldsymbol{{x}}}{\mathrm{2}\boldsymbol{{y}}}\left[\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{y}}}\right)^{\boldsymbol{{i}}} +\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{y}}}\right)^{−\boldsymbol{{i}}} \right] \\ $$$$\boldsymbol{{let}}\:\:\:\frac{\boldsymbol{{x}}}{\boldsymbol{{y}}}=\boldsymbol{{v}}\:\boldsymbol{{so}}\:\frac{\boldsymbol{{dx}}}{\boldsymbol{{dy}}}=\boldsymbol{{v}}+\boldsymbol{{y}}.\frac{\boldsymbol{{dv}}}{\boldsymbol{{dy}}} \\ $$$$\boldsymbol{{now}}\: \\ $$$$\:\:\:\boldsymbol{{v}}+\boldsymbol{{y}}.\frac{\boldsymbol{{dv}}}{\boldsymbol{{dy}}}=\frac{\boldsymbol{{v}}}{\mathrm{2}}\left[\frac{\boldsymbol{{v}}^{\mathrm{2}\boldsymbol{{i}}} +\mathrm{1}}{\boldsymbol{{v}}^{\boldsymbol{{i}}} }\right] \\ $$$$\boldsymbol{{y}}.\frac{\boldsymbol{{dv}}}{\boldsymbol{{dy}}}=\boldsymbol{{v}}\left[\frac{\left(\boldsymbol{{v}}^{\boldsymbol{{i}}} −\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}\boldsymbol{{v}}^{\boldsymbol{{i}}} }\right] \\ $$$$\frac{\boldsymbol{{dy}}}{\boldsymbol{{y}}}=\frac{\mathrm{2}\boldsymbol{{v}}^{\boldsymbol{{i}}−\mathrm{1}} }{\left(\boldsymbol{{v}}^{\boldsymbol{{i}}} −\mathrm{1}\right)^{\mathrm{2}} }\boldsymbol{{dv}} \\ $$$$\boldsymbol{{integrating}}\:\boldsymbol{{both}}\:\boldsymbol{{sides}}\:\boldsymbol{{we}}\:\boldsymbol{{get}}.. \\ $$$$\boldsymbol{{ln}}\left(\boldsymbol{{y}}\right)=\mathrm{2}\boldsymbol{{i}}.\frac{\mathrm{1}}{\left(\boldsymbol{{v}}^{\boldsymbol{{i}}} −\mathrm{1}\right)}+\boldsymbol{{ln}}\left(\boldsymbol{{c}}\right) \\ $$$$\boldsymbol{{so}}\:\:\:\boldsymbol{{y}}=\boldsymbol{{c}}.\boldsymbol{{e}}^{\frac{\mathrm{2}\boldsymbol{{i}}}{\left[\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{y}}}\right)^{\boldsymbol{{i}}} −\mathrm{1}\right]}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com