Question Number 100675 by bobhans last updated on 28/Jun/20

If log _(2x) ((1/(18))) = log _(18) ((1/(3y))) = log _(3y) ((1/(2x)))  find 3x−2y

Commented bybramlex last updated on 28/Jun/20

⇔ 2x = 3y = 18 → { ((x=9)),((y=6)) :}  ∴ 3x−2y = 27−12 = 15

Answered by 1549442205 last updated on 28/Jun/20

  log_(2x) ((1/(18)))=log_(2x) (1)−log_(2x) 18=−log_(2x) 18  =log_(3y) ((1/(2x)))=log_(3y) 1−log_(3y) (2x)=−log_(3y) (2x)  log_(18) ((1/(3y)))=log_(18) 1−log_(18) (3y)=−log_(18) (3y)  ,so from the hypothesis we get:  log_(2x) 18=log_(3y) (2x)=log_(18) (3y)=a.So   { (((2x)^a =18(1))),(((3y)^a =2x(2)   (∗))),((18^a =3y (3))) :}  From (2)we get (2x)^a =[(3y)^a ]^a =(3y)^a^2  (4)  From (3) we get (3y)^a^2  =(18^a )^a^2  =18^a^3  (5)  From(4) ,(5) we get (2x)^a =18^a^3   (6)  From (1) and (6) we obtain  18=18^a^3  ⇒a^3 =1⇔a=1.Replace into (∗)  we get  { ((3y=2x)),((2x=18)),((18=3y)) :}   ⇔ { ((x=9)),((y=6)) :}  Therefore,3x−2y=3×9−2×6=15