Question Number 100732 by bemath last updated on 28/Jun/20

(1) If ((x+yi)/(1+i)) = (7/(7+i)) where x and y   are real , what is the value of x+y   (2)What are all values of x which  satisfy x^2 −cos x+1 = 0  (3)What are all values of x between   0^o  and 360^o  which satisfy   (5+2(√6))^(sin x)  + (5−2(√6))^(sin x)  = 2(√3)

Commented byjohn santu last updated on 28/Jun/20

(2) x = 0

Commented byjohn santu last updated on 28/Jun/20

(1)7x+7yi +xi −y = 7+7i  (7x−y)+(x+7y)i = 7+7i   { ((7x−y=7)),((x+7y=7)) :} ⇒ x =((28)/(25)) &y = ((21)/(25))  x+y = ((49)/(25))

Commented byjohn santu last updated on 28/Jun/20

(3) 5+2(√6) = ((5+2(√6))/(5−2(√6))) × 5−2(√6)  = (1/(5−2(√6)))   (5+2(√6))^(sin x)  + ((1/(5+2(√6))))^(sin x) =  2(√3)  set (5+2(√6))^(sin x)  = t   ⇒t + (1/t) = 2(√3) ; t^2 −2(√3) t+1 = 0  t = ((2(√3) + (√8))/2) = (√3)+(√2)   ⇒(5+2(√6))^(sin x)  = (((√3)+(√2))^2 )^(1/2)   ⇒(5+2(√6))^(sin x)  = (5+2(√6))^(1/2)   sin x = (1/2) , x = 30^o , 150^o

Commented byDwaipayan Shikari last updated on 28/Jun/20

(5+2(√6))^(sinx) +(1/((5+2(√6))^(sinx) ))=2(√3)  p+(1/p)=2(√3)⇒p^2 −2(√3)p+1=0⇒ p=((2(√3)±(√(12−4)))/2)=(√3)+(√2)  or(√3)−(√2)  (5+2(√6))^(sinx) =(√3)+(√2)  ((√3)+(√2))^(2sinx) =(√3)+(√2)⇒2sinx=1  sinx=(1/2) [x=kπ+(−1)^k (π/6)]{General solution)                                                      {k∈Z  or   x=30°  or   x=150°

Commented byDwaipayan Shikari last updated on 28/Jun/20

          7x+7yi+xi−y=7+7i      7x−y+i(7y+x)=7+7i         { ((7x−y=7)),((7y+x=7)) :}  after solving  x=((56)/(50))  y=((42)/(50))⇒ x+y=((98)/(50))

Answered by 1549442205 last updated on 28/Jun/20

  1) ((x+iy)/(1+i))=(7/(7+i))⇔(7x−y−7)+(x+7y−7)i=0  ⇔ { ((7x−y−7=0(1))),((x+7y−7=0(2))) :}⇔ { ((x=((28)/(25)))),((y=((21)/(25)))) :}  Hence x+y=((49)/(25))  2)x^2 −cosx+1=0⇔x^2 +2sin^2 (x/2)=0  ⇔ { ((x^2 =0)),((sin^2 (x/2)=0)) :} ⇔x=0  3)(5+2(√6))^(sinx) +(5−2(√6))^(simx) =2(√3)  ⇔((√3)+(√2))^(2sinx) +((√3)−(√2))^(2sinx) =2(√3) (1)  Putting ((√3)+(√2))^(2sinx) =y⇒((√3)−(√2))^(2sinx)   =(1/y)(due to ((√3)+(√2))((√3)−(√2))=1).We get  the quadratic eqiation y+(1/y)=2(√3)  ⇔y^2 −2(√3)y+1=0.Δ′=3−1=2,so  y_1 =(√3)+(√(2 )) ,y_2 =(√3)−(√2)  i)If y=(√3)+(√2) then ((√3)+(√2))^(2sinx) =(√3)+(√2)  ⇔2sinx=1⇔sinx=(1/2)⇔x=(π/6)+2kπ or  x=((5π)/6)+2nπ  ii)If y=(√3)−(√2)=((√3)+(√2))^(−1) then  ((√3)+(√2))^(2sinx) =((√3)+(√2))^(−1) ⇔2sinx=−1  ⇔sinx=((−1)/2)=sin((−π)/6)⇔x=((−π)/6)+2mπ  or x=((7π)/6)+2pπ  From the condition that 0<x<2π  we obtain x∈{(𝛑/6);((5𝛑)/6);((7𝛑)/6)}