Question Number 100899 by mhmd last updated on 29/Jun/20

find the fourier series of the function f(x)= { ((x    −2≤x≤0   )),((4          0≤x≤2)) :}   ?  help me sir ?

Answered by bramlex last updated on 29/Jun/20

f(x) : odd function. L = 4  a_n  = 0   b_n  = (2/L)∫_0 ^L  f(x)sin (((nπx)/L)) dx  b_n  = (2/4)[∫_(−2) ^0 x sin (((nπx)/4))dx+∫_0 ^2 4sin (((nπx)/4)) dx]   b_n =(1/2)[ ((16)/(n^2 π^2 ))sin (((nπ)/2))+(4/(nπ)) ]  b_n  = (8/((nπ)^2 )) sin (((nπ)/2)) + (2/(nπ))  f(x)=(a_0 /2) + Σ_(n=1) ^∞ [(8/((nπ)^2 )) sin (((nπ)/2))+(2/(nπ)) ]. cos (((nπx)/4))

Commented bymhmd last updated on 29/Jun/20

sir can you send the all solution ?

Commented bymhmd last updated on 29/Jun/20

thank you sir