Question Number 100994 by mathmax by abdo last updated on 29/Jun/20

let  A = (((2           1)),((1            3)) )  1) calculate A^n   2) find e^A  ,e^(−A)   3)determine ch(A) and sh(A)  is ch^2 A−sh^2 A =1?

Answered by mathmax by abdo last updated on 01/Jul/20

1) the caracteristic polynom of A is p_c (x)=det(A−xI)  = determinant (((2−x           1)),((1            3−x))) =(x−2)(x−3)−1 =x^2 −5x+6−1 =x^2 −5x +5  P_c (x)=0 ⇔x^2 −5x +5 =0 →Δ =25−20 =5 ⇒α=((5+(√5))/2) and β=((5−(√5))/2)  we have x^(n )  =qP_c (x) +u_n x +v_n  ⇒ { ((α^n  =u_n α +v_n )),((β^n  =u_n β +v_n )) :}  ⇒u_n =((α^n −β^n )/(α−β)) =(1/(√5)){ (((5+(√5))/2))^n −(((5−(√5))/2))^n }  v_n =α^n −αu_n =α^n  −α×((α^n −β^n )/(α−β)) =((α^(n+1) −β α^n −α^(n+1) +αβ^n )/(α−β)) =((αβ^n −βα^n )/(α−β))  =((((5+(√5))/2)(((5−(√5))/2))^n  −((5−(√5))/2)(((5+(√5))/2))^n )/(√5))  we have A^n  =u_n A +v_n I (by cayley hamilton) ⇒  A^n  =(1/(√5)){(((5+(√5))/2))^n −(((5−(√5))/2))^n } (((2          1)),((1           3)) ) +((((5+(√5))/2)(((5−(√5))/2))^n −((5−(√5))/2)(((5+(√5))/2))^n )/(√5)) (((1      0)),((0       1)) )