Question Number 101268 by mathmax by abdo last updated on 01/Jul/20

calculate ∫_(−∞) ^∞  ((cos(arctan(2x+1)))/(x^2  +2x+2))dx

Answered by mathmax by abdo last updated on 02/Jul/20

I =∫_(−∞) ^(+∞)  ((cos(arctan(2x+1)))/(x^2  +2x+2))dx changement 2x+1 =t give  I =∫_(−∞) ^(+∞)  ((cos(arctant))/((((t−1)/2))^2  +2(((t−1)/2))+2)) (dt/2)  =(1/2) ∫_(−∞) ^(+∞)  ((cos(arctant))/((((t−1)^2 )/4)+t+1)) dt =2 ∫_(−∞) ^(+∞)  ((cos(arctant))/((t−1)^2 +4t+4))dt  =2 ∫_(−∞) ^(+∞)  ((cos(arctant))/(t^2 −2t+1 +4t +4))dt =2 ∫_(−∞) ^(+∞)  ((cos(arctant))/(t^2 +2t+5))dt  =2 Re(∫_(−∞) ^(+∞)  (e^(iarctant) /(t^(2 )  +2t +5))dt) let ϕ(z) =(e^(iarctanz) /(z^2  +2z +5))  poles of ϕ?  z^2  +2z +5 =0→Δ^′  =1−5 =−4 ⇒z_1 =−1+2i and z_2 =−1−2i  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 )  ϕ(z) =(e^(iarctan(z)) /((z−z_1 )(z−z_2 ))) ⇒Res(ϕ,z_1 ) =(e^(iarctanz_1 ) /(z_1 −z_2 )) =(e^(iarctan(−1+2i)) /(4i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ×(e^(iarctan(−1+2i)) /(4i)) =(π/2) e^(iarctan(−1+2i))   we know arctanz =(1/(2i))ln(((1+iz)/(1−iz))) ⇒arctan(−1+2i) =(1/(2i))ln(((1+i(−1+2i))/(1−i(−1+2i))))  =(1/(2i))ln(((1−i−2)/(1+i+2))) =(1/(2i))ln(((−1−i)/(3+i))) also  ((−1−i)/(3+i)) =(((√2)e^(i((5π)/4)) )/((√(10))e^(iarctan((1/3))) )) =((√2)/(√(10))) e^(i(((5π)/4)−arctan((1/3))))  ⇒  arctan(−1+2i) =(1/(2i))ln(((√2)/(√(10)))) +(1/(2i))×i(((5π)/4)−arctan((1/3)))  =(1/(4i))ln((1/5))+(1/2)(((5π)/4) −arctan((1/3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =(π/2)e^(i((1/(4i))ln((1/5))+((5π)/8)−(1/2)arctan((1/3))))   =(π/2)e^(−((ln5)/4))  { cos(((5π)/8)−(1/2)arctan((1/3))) +isin(....)} ⇒  I =π e^(−((ln5)/4))  cos(((5π)/8)−(1/2)arctan((1/3)))