Question Number 101269 by mathmax by abdo last updated on 01/Jul/20

calculate ∫_4 ^(+∞)      (dx/((x−2)^5 (x+3)^7 ))

Answered by mathmax by abdo last updated on 05/Jul/20

I =∫_4 ^(∞ )   (dx/((x−2)^5 (x+3)^7 )) ⇒ I =∫_4 ^∞  (dx/((((x+3)/(x−2)))^7 (x−2)^(12) )) we do the cha7gement  ((x+3)/(x−2)) =t ⇒x+3 =tx−2t ⇒(1−t)x =−2t−3 ⇒x =((2t+3)/(t−1)) ⇒  (dx/dt) =((2(t−1)−(2t+3))/((t−1)^2 )) =((−5)/((t−1)^2 )) and x−2 =((2t+3)/(t−1))−2 =((2t+3−2t+2)/(t−1)) =(5/(t−1)) ⇒  I =∫_(7/2) ^1  ((−5dt)/((t−1)^2 .t^7 .((5/(t−1)))^(12) )) =(1/5^(11) ) ∫_1 ^(7/2)  (((t−1)^(12) )/((t−1)^2  t^7 ))dt  ⇒  5^(11) ×I =∫_1 ^(7/2)  (((t−1)^(10) )/t^7 )dt =∫_1 ^(7/2)  ((Σ_(k=0) ^(10 )  C_(10) ^k  t^k (−1)^(10−k) )/t^7 )dt  =Σ_(k=0) ^(10) (−1)^(k )  C_(10) ^k   ∫_1 ^(7/(2 ))  t^(k−7)  dt  =Σ_(k=0 and k≠6) ^(10)  (−1)^k  C_(10) ^k  [(1/(k−6))t^(k−6) ]_1 ^(7/2)   +C_(10) ^6  [ln∣t∣]_1 ^(7/2)   =Σ_(k=0 and k≠6) ^(10)  (−1)^k  (C_(10) ^k /(k−6)){((7/2))^(k−6) −1} +C_(10) ^6  ln((7/2)) ⇒  I =(1/5^(11) ) Σ_(k=0 and k≠6) ^(10)  (((−1)^k  C_(10) ^k )/(k−6)){ ((7/2))^(k−6) −1}+(C_(10) ^6 /5^(11) )ln((7/2)) .