Question Number 101345 by bobhans last updated on 02/Jul/20

(1)∫ ((sec ^4 x tan x)/(sec ^4 x+4)) dx=  (2) ∫x^(2x) (2lnx +2) dx =  (3) ∫_0 ^1  (√(1−x^2 )) dx =

Commented byjohn santu last updated on 02/Jul/20

(1)∫ ((sec ^4 x tan x)/(sec ^4 x +4)) dx   set : z = sec ^4 x + 4 → sec ^4 x tan x dx =(1/4) dz  I = (1/4)∫ (dz/z) = (1/4) ln ∣z∣ + c    = (1/4) ln ∣sec ^4 x + 4∣ + c   (2) ∫ x^(2x)  (2 ln x +2) dx   apply a^b  = e^(b ln a)   J = ∫ e^(2x ln (x) ) (2ln x +2) dx   let q = 2x ln x → dq = (2ln x +2)dx  J= ∫ e^q  dq = e^q  + c = x^(2x)  + c   (3) ∫_0 ^1  (√(1−x^2 )) dx = (π/4)   long way : set: sin s =  x   G = ∫_0 ^(π/2)  (√(1−sin ^2 s)) cos s ds   G= ∫_0 ^(π/2)  [ (1/2) + (1/2) cos (2s)] ds   = [(1/2)s + (1/4) sin (2s) ]_0 ^(π/2) = (π/4)   ♠♥⧫

Commented bybramlex last updated on 02/Jul/20

♥⧫♠

Commented bybobhans last updated on 02/Jul/20

thank you