Question Number 101375 by ajfour last updated on 02/Jul/20

Commented byajfour last updated on 02/Jul/20

In terms of R, find radii a,b,c.

Commented byajfour last updated on 05/Jul/20

Commented byajfour last updated on 06/Jul/20

lets consider both circles of radii  a and c generally.  Both are at a distance of (R+r) from  center M of circle of radius R.  Both touch the line y=R^2 +(1/4)+R  both touch the parabola at (x,x^2 )  x_1 =(√(R^2 −(1/4)))  center of our general circle is       (2(√(Rr)) , R^2 +(1/4)+R−r)  eq. of the circle:   { (((x−2(√(Rr)))^2 +[x^2 −(R^2 +(1/4)+R−r)]^2 =r^2 )),(((R+(1/2))^2 −r−(r/(√(1+4x^2 ))) = x^2 )) :}      and   x−2(√(Rr)) = ((r(2x))/(√(1+4x^2 )))   for r=c  but     2(√(Rr))−x=((r(2x))/(√(1+4x^2 )))       for r=a  And since we know x_1 =(√(R^2 −(1/4)))       2(√(Rr_1 ))=x+((2x_1 r)/(√(1+4x_1 ^2 )))       2(√(Ra))=(√(R^2 −(1/4))) + ((2a(√(R^2 −(1/4))))/(√(1+4R^2 −1)))  2(√(Ra))=(√(R^2 −(1/4))) + (a/R)(√(R^2 −(1/4)))  (a/R)(√(R^2 −(1/4))) −2R(√(a/R)) +(√(R^2 −(1/4)))=0  (√(a/R))=(R/(√(R^2 −(1/4))))±(√((R^2 /(R^2 −(1/4)))−1))           (√(a/R)) =((R±(1/2))/(√(R^2 −(1/4))))  ⇒  (a/R)=(((R±(1/2))^2 )/((R+(1/2))(R−(1/2))))  It seems               (a/R)=(((R+(1/2)))/((R−(1/2))))       example   R=2  ⇒   a=((10)/3)   ..........

Commented byajfour last updated on 05/Jul/20

Answered by mr W last updated on 05/Jul/20

Center of circle with radius R is  M(0,m)  y=x^2   x^2 +(y−m)^2 =R^2   ⇒y+(y−m)^2 =R^2   ⇒y^2 −(2m−1)y+m^2 −R^2 =0  Δ=(2m−1)^2 −4(m^2 −R^2 )=0  1+4R^2 −4m=0  ⇒m=(1/4)+R^2   Center of circle with radius b is  B(0,m+R+b)  x^2 +(y−m−R−b)^2 =b^2   y+[y−((1/4)+R^2 +R+b)]^2 =b^2   y^2 −2(R^2 +R+b−(1/4))y+(R^2 +R+b+(1/4))^2 −b^2 =0  Δ=(R^2 +R+b−(1/4))^2 −(R^2 +R+b+(1/4))^2 +b^2 =0  b^2 −b−(R^2 +R)=0  ⇒b=(1/2)(1+2R+1)=R+1    Center of circle with radius a is  A(2(√(Ra)),m+R−a)  it touches the parabola at P(p, p^2 ).  tan θ=2p=((2(√(Ra)))/(a−R))  ⇒p=((√(Ra))/(a−R))  (2(√(Ra))−p)^2 +(m+R−a−p^2 )^2 =a^2   (2(√(Ra))−((√(Ra))/(a−R)))^2 +[m+R−a−((Ra)/((a−R)^2 ))]^2 =a^2   [2−(1/(R((a/R)−1)))]^2 ((a/R))+(1/R^2 )[m−R((a/R)−1)−((a/R)/(((a/R)−1)^2 ))]^2 =((a/R))^2   [2−(1/(R(ξ−1)))]^2 ξ+(1/R^2 )[(1/4)+R^2 −R(ξ−1)−(ξ/((ξ−1)^2 ))]^2 =ξ^2   ⇒ξ=...    Center of circle with radius c is  C(2(√(Rc)),m+R−c)  it touches the parabola at Q(q, q^2 ).  tan ϕ=2q  q=2(√(Rc))+c sin ϕ=2(√(Rc))+((2cq)/(√(1+4q^2 )))  ⇒q−2(√(Rc))=((2cq)/(√(1+4q^2 )))   ...(i)  q^2 =m+R−c−c cos ϕ=m+R−c−(c/(√(1+4q^2 )))  ⇒m+R−c−q^2 =(c/(√(1+4q^2 )))    ...(ii)  q−2(√(Rc))=2q(m+R−c−q^2 )  q^3 −(R^2 +R−c−(1/4))q−(√(Rc))=0  ⇒q=((((√(Rc))/2)+(√(((Rc)/4)−(((R^2 +R−c−(1/4))^3 )/(27))))))^(1/3) +((((√(Rc))/2)−(√(((Rc)/4)−(((R^2 +R−c−(1/4))^3 )/(27))))))^(1/3)   put this into (i) or (ii) to get c

Commented bymr W last updated on 05/Jul/20

Commented byajfour last updated on 05/Jul/20

but c is to be determined, Sir.

Commented bymr W last updated on 05/Jul/20

a and c can only be determined   numerically.

Commented byajfour last updated on 05/Jul/20

if we discuss, i think we can get the  expression for radii a and c , Sir..

Commented bymr W last updated on 05/Jul/20

i found no way to get them.

Commented byajfour last updated on 06/Jul/20

    Sir i got  a=R(R+1/2)/(R−1/2)  Expression for c indeed seems  difficult.

Commented bymr W last updated on 06/Jul/20

you got it at least for a! it′s correct.