Question Number 101531 by mhmd last updated on 03/Jul/20

find ∫(√(ax−x^2 ))dx

Answered by Mr.D.N. last updated on 03/Jul/20

  I = ∫(√(ax−x^2 ))dx     = ∫(√(−(x^2 −ax)))   dx    =  ∫  (√(((a/2))^2 −(x−(a/2))^2 ))     dx    =  (((x−(a/2))(√(((a/2))^2 −(x−(a/2))^2 )))/2) + ((((a/2))^2 )/2)sin^(−1) (((x−(a/2)))/(a/2))+C  = ((((2x−a)/2)(√(ax−x^2 )))/2) + (a^2 /8) sin^(−1) ((2x−a)/a)+C  = (((2x−a)(√(ax−x^2 )))/4) + (a^2 /8) sin^(−1)  (((2x−a))/a) +C//.

Commented bymhmd last updated on 03/Jul/20

thank you sir