Question Number 101595 by mathmax by abdo last updated on 03/Jul/20

let f(x) =cos^n x  1) find f^((n)) (x) and f^((n)) (0)  2) developp f at integr serie  3) detemine  ∫ f(x)dx

Answered by mathmax by abdo last updated on 05/Jul/20

1) we have f(x) =cos^n x ⇒f(x) =(((e^(ix)  +e^(−ix) )/2))^n  =(1/2^n )Σ_(k=0) ^n  C_n ^k  (e^(ix) )^k  (e^(−ix) )^(n−k)   =(1/2^n ) Σ_(k=0) ^n  C_n ^k  e^(ikx)  e^(−i(n−k)x)  =(1/2^n ) Σ_(k=0) ^n  C_n ^k   e^(i(k−n+k)x)  =(1/2^n )Σ_(k=0) ^n  C_n ^k  e^(i(2k−n)x)   ⇒ f^((p)) (x) =(1/2^n ) Σ_(k=0) ^n C_n ^k  (e^(i(2k−n)x) )^((p))   =(1/2^n ) Σ_(k=0) ^n  C_n ^k  (i(2k−n))^p  e^(i(2k−n)x)  ⇒  f^((n)) (x) =(1/2^n ) Σ_(k=0) ^n  C_n ^k  (i(2k+n))^n  e^(i(2k−n)x)  and   f^((n)) (0) =(1/2^n ) Σ_(k=0) ^n  (2k+n)^n  i^n  C_n ^k   2)f(x) =Σ_(p=0) ^∞  ((f^((p)) (x))/(p!)) x^p  ⇒f(x) =Σ_(p=0) ^∞  (1/(p!)){(1/2^n ) Σ_(k=0) ^n  C_n ^k  i^p (2k−n)^p }x^p   =Σ_(p=0) ^∞  A_p x^p   with A_p =(1/2^n )×(1/(p!)) Σ_(k=0) ^n  C_n ^k  i^p (2k−n)^p

Answered by mathmax by abdo last updated on 05/Jul/20

3) we have cos^n x =(((e^(ix)  +e^(−ix) )/2))^n  =(1/2^n ) Σ_(k=0) ^n C_n ^k  (e^(ix) )^k  (e^(−ix) )^(n−k)   =(1/2^n ) Σ_(k=0) ^n  C_n ^k  e^(ikx) e^((k−n)ix)  =(1/2^n ) Σ_(k=0) ^n  C_n ^k  e^(i(2k−n)x)  ⇒  ∫f(x)dx =(1/2^n ) Σ_(k=0) ^n  C_n ^k  ×(1/(i(2k−n)))e^(i(2k−n)x)   +C  =((−i)/2^n ) Σ_(k=0) ^n  C_n ^k  (1/(2k−n)){cos(2k−n)x +isin(2k−n)x} +C  =−(i/2^n ) Σ_(k=0) ^n  (C_n ^k /(2k−n))cos(2k−n)x +(1/2^n ) Σ_(k=0) ^n  (C_n ^k /(2k−n)) sin(2k−n)x +c  but ∫ cos^n x dx ∈ R ⇒ ∫ cos^n  x dx =(1/2^n ) Σ_(k=0) ^n  (C_n ^k /(2k−n))sin(2k−n)x +c