Question Number 101645 by mathocean1 last updated on 03/Jul/20

E is a vectorial plane in B=(i^→ ,j^→ )  base. f is an endomorphism of E.  f(i^→ )=4i^→ −j^→  and f(j^→ )=2i^→ +j^→ .  u^→ =xi^→ +yj^→  ∈ E and x,y ∈ R.  1) Determinate f^( −1) (u).

Answered by mathmax by abdo last updated on 03/Jul/20

M(f,B) =  (((4             2)),((−1         1)) )  we have u  ((x),(y) )  f^(−1) (u)→M^(−1) .u   let find M^(−1)     M is root of (4−u)(1−u)+2 =0 ⇒  (u−4)(u−1)+2 =0 ⇒u^2 −5u +6 =0 ⇒M^2 −5M +6I =0 ⇒  M^2 −5M =−6I ⇒−(1/6)M.(M−5I) =I ⇒M^(−1)  =−(1/6)(M−5I)  = (((−(2/3)          −(1/3))),(((1/6)                   −(1/6))) ) +  ((((5/6)         0)),((0            (5/6))) ) =  (((−(1/6)           −(1/3))),((  (1/6)                    (2/3))) )  let f^(−1) (u) = ((x^′ ),(y^′ ) )  ⇒ ((x^′ ),(y^′ ) )  =M^(−1) .u =  (((−(1/6)         −(1/3))),(((1/6)                   (2/3))) ) . ((x),(y) )  = (((−(x/6)−(y/3))),(((x/6)   +((2y)/3))) )