Question Number 101756 by bramlex last updated on 04/Jul/20

∫ ((3x^2 −11x+6)/((x^2 +1)(x−5))) dx

Answered by john santu last updated on 04/Jul/20

3x^2 −11x+6 = (x−5)(ax+b)+c(x^2 +1)  x=0 ; 6 = −5b+c  x=5 ; 26 = 26c ⇒c=1 ∧b = −1  x=−1; 20= (−6)(−a−1)+2  3 = a+1 ⇒a = 2  ∫ ((2x−1)/(x^2 +1)) dx + ∫ (1/(x−5)) dx =  ∫ ((d(x^2 +1))/(x^2 +1)) − arctan (x) + ln∣x−5∣ + c  = ln(x^2 +1)+ ln(x−5)−arctan (x) +c   = ln((x^2 +1)(x−5))−arctan (x)+ c  (JS ⊛ )

Answered by Dwaipayan Shikari last updated on 04/Jul/20

∫((Ax+C)/(x^2 +1))+(B/(x−5))                               {3x^2 −11x+6=(Ax+C)(x−5)+B(x^2 +1)                                                                      A+B=3    5A−C=11  B−5C=6                                                                  5B+C=4    B−5C=6                                                                 B=1  C=−1 A=2   = ∫((2x−1)/(x^2 +1))  +  ∫    (1/(x−5))                                                       log(x^2 +1)−tan^(−1) x+log(x−5)+Constant  ★(D.S)