Question Number 102158 by mathmax by abdo last updated on 07/Jul/20

calculate ∫_(−∞) ^(+∞)  (dx/((x^2  +1)^2 (x^2  +9)^2 ))

Answered by mathmax by abdo last updated on 09/Jul/20

I =∫_(−∞) ^(+∞)  (dx/((x^2 +1)^2 (x^2  +9)^2 ))   let ϕ(z)=(1/((z^2  +1)^2 (z^2  +9)^2 ))  we have  ϕ(z) =(1/((z−i)^2 (z+i)^2 (z−3i)^2 (z+3i)^2 )) the poles of ϕ are +^− i and +^− 3i  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ { Res(ϕ,i)+Res(ϕ,3i)}  Res(ϕ,i) =lim_(z→i)    (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   lim_(z→i)     {(1/((z+i)^2 (z^2  +9)^2 ))}^((1))   =lim_(z→i)    −((2(z+i)(z^2  +9)^2  +2(2z)(z^2  +9)(z+i)^2 )/((z+i)^4 (z^2 +9)^4 ))  =−lim_(z→i)   ((2(z^2  +9)+4z(z+i))/((z+i)^3 (z^2  +9)^3 )) =−((2×8+4i(2i))/((2i)^3 ×8^3 )) =−(8/(−8i×8^3 )) =(1/(8^3 i))  Res(ϕ,3i) =lim_(z→3i)  (1/((2−1)!)){(z−3i)^2 ϕ(z)}^((1))   =lim_(z→3i)     {(1/((z^2  +1)^2 (z+3i)^2 ))}^((1))   =−lim_(z→3i)    ((2(2z)(z^2  +1)(z+3i)^2  +2(z+3i)(z^2  +1)^2 )/((z^2  +1)^4 (z +3i)^4 ))  =−lim_(z→3i)    ((4z(z+3i) +2(z^2  +1))/((z^2 +1)^3 (z+3i)^3 )) =−((12i(6i)+2(−8))/((−8)^3 (6i)^3 ))  =−((−12×6−16)/(−8^3  ×6^3 (−i))) =−((12×6 +16)/(8^3  ×6^3 i)) =−((72+16)/(48^3 i)) =−((88)/(48^3 i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(1/(8^3 i))−((88)/(48^3 i))} =2π{ (1/8^3 ) −((88)/(48^3 ))} =I