Question Number 102165 by mathmax by abdo last updated on 07/Jul/20

calculate ∫_(−∞) ^∞   ((x^2 dx)/((x^2 −x+1)^3 ))

Answered by MAB last updated on 07/Jul/20

f(z)=(z^2 /((z^2 −z+1)^3 )) has 2 triple poles:   z_1 =e^(i(π/3)) ,z_2 =e^(−i(π/3))   Im(z_2 )<0 and Im(z_1 )>0  ∫_(−∞) ^∞   ((x^2 dx)/((x^2 −x+1)^3 ))=2πi.Res(f(z),z_1 )  =2πi.(1/((3−1)!))((z^2 /((z−z_2 )^3 )))_(z=z_1 ) ^((2))   =((2π)/(3(√3)))  finally   ∫_(−∞) ^∞   ((x^2 dx)/((x^2 −x+1)^3 ))=((2π)/(3(√3)))

Answered by mathmax by abdo last updated on 07/Jul/20

I =∫_(−∞) ^(+∞)  ((x^2  dx)/((x^2 −x+1)^3 ))  let ϕ(z) =(z^2 /((z^2 −z+1)^3 ))  pole of ϕ  z^2 −z+1 =0 →Δ =−3 ⇒z_1 =((1+i(√3))/2) =e^((iπ)/3)  and z_2 =((1−i(√3))/2) =e^(−((iπ)/3))  ⇒ϕ(z) =(z^2 /((z−z_1 )^3 (z−z_2 )^3 ))  the poles of ϕ are  e^((iπ)/3)  and e^(−((iπ)/3) ) (triples)  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,e^((iπ)/3) ) and   Res(ϕ,e^((iπ)/3) ) =lim_(z→e^((iπ)/3) )   (1/((3−1)!)){(z−e^((iπ)/3) )^3  ϕ(z)}^((2))   =(1/2)lim_(z→e^((iπ)/3) )     {(z^2 /((z−e^(−((iπ)/3)) )^3 ))}^((2))   =lim_(z→e^((iπ)/3) )    {((2z(z−e^(−((iπ)/3)) )^3 −3(z−e^(−((iπ)/3)) )^2 z^2 )/((z−e^(−((iπ)/3)) )^6 ))}^((1))   =lim_(z→e^((iπ)/3)  )    { ((2z(z−e^(−((iπ)/3)) )−3z^2 )/((z−e^(−((iπ)/3)) )^4 ))}^((1))   =lim_(z→e^((iπ)/3) )    {((−z^2 −2z e^(−((iπ)/3)) )/((z−e^(−((iπ)/3)) )^4 ))}^((1))   −lim_(z→e^((iπ)/3) )    (((2z+2e^(−((iπ)/3)) )(z−e^(−((iπ)/3)) )^4  −4(z−e^(−((iπ)/3)) )^3 (z^2  +2z e^(−((iπ)/3)) ))/((z−e^(−((iπ)/3)) )^8 ))  =−lim_(z→e^((iπ)/3) )   (((2z+2e^(−((iπ)/3)) )(z−e^(−((iπ)/3)) )−4(z^2  +2z e^(−((iπ)/3)) ))/((z−e^(−((iπ)/3)) )^5 ))  =−   ((4cos((π/3))2isin((π/3))−4{e^((2iπ)/3)  +2})/((2isin((π/3)))^5 ))  =−((8×(1/2)×((√3)/2)i−8 −4e^((i2π)/3) )/(32i(((√3)/2))^5 )) =((2(√3)i −8 −4(−(1/2)+((i(√3))/2)))/(32i(((√3)/2))^5 ))  =(6/(32i((√3))^5 ))×(2^5 /(√3)) =(6/(i((√3))^6 )) =(6/(3^3 i)) =(2/(9i)) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(2/(9i)) =((4π)/9) ⇒  I =((4π)/9)

Commented bymathmax by abdo last updated on 07/Jul/20

error at final line Res(ϕ,e^((iπ)/3) ) =(1/(2i))×(6/(32(((√3)/2))^5 i)) =((3×2^5 )/(32i×((√3))^5 )) =(1/(i((√3))^3 )) =(1/(3(√3)i))  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/(3(√3)i)) =((2π)/(3(√3))) ⇒★ I =((2π)/(3(√3))) ★

Commented byMAB last updated on 07/Jul/20

exact sir