Question Number 102323 by Learner101 last updated on 08/Jul/20

Solve this linear Equation  (dy/dx) + y cos x = (1/2) sin x

Answered by bemath last updated on 08/Jul/20

IF  u(x)=e^(∫cos x dx)  = e^(sin x)   y(x)=((∫ (1/2)sin x e^(sin x)  dx +C)/e^(sin x) )  y(x)= (((1/2)∫sin xe^(sin x)  dx +C)/e^(sin x) )  y(x)= e^(−sin x) {(1/2)∫sin x e^(sin x)  +C}

Commented bybemath last updated on 08/Jul/20

yes sir.

Answered by mathmax by abdo last updated on 08/Jul/20

y^′  +y cosx =((sinx)/2)  (he)→y^′  =−ycosx ⇒(y^′ /y) =−cosx ⇒ln∣y∣ =−sinx +c ⇒y =k e^(−sinx)   lagrange method →y^′  =k^′  e^(−sinx)  −cosx k e^(−sinx)   e ⇒k^′  e^(−sinx) −kcosx e^(−sinx)  +kcosx e^(−sinx)  =(1/2)sinx ⇒  k^′  e^(−sinx)  =(1/2)sinx ⇒ k^′  =(1/2)sinx e^(sinx)  ⇒ k =(1/2)∫^x  sint e^(sint)  dt +c ⇒  y(x) =((1/2)∫^x  sint e^(sint)  dt +c)e^(−sinx)   =c e^(−sinx )  +(e^(−sinx) /2) ∫^x sint e^(sint)  dt