Question Number 102417 by mathmax by abdo last updated on 09/Jul/20

calculate ∫_0 ^∞  e^(−x) ln(1+e^x )dx

Answered by floor(10²Eta[1]) last updated on 09/Jul/20

u=ln(e^x +1)⇒du=(e^x /(e^x +1))dx  dv=e^(−x) dx⇒v=−e^(−x)   [−e^(−x) ln(e^x +1)]_0 ^∞ +∫_0 ^∞ (1/(e^x +1))dx  ln(2)+∫_0 ^∞ (1/(e^x +1))dx=I  u=e^x ⇒(du/u)=dx  ∫_1 ^∞ (1/(u(u+1)))du=∫_1 ^∞ ((1/u)−(1/(u+1)))du  lim_(a→∞) [ln(u)−ln(u+1)]_1 ^a =ln(2))  ⇒I=ln(2)+ln(2)=ln(4).

Commented bymathmax by abdo last updated on 10/Jul/20

thank you sir

Answered by OlafThorendsen last updated on 09/Jul/20

I =  ∫_0 ^∞  e^(−x) ln(1+e^x )dx  I =  ∫_0 ^∞  e^(−x) ln[e^x (1+e^(−x) )]dx  I =  ∫_0 ^∞  [xe^(−x) +e^(−x) ln(1+e^(−x) )]dx  I =  [−(x+1)e^(−x) +(1+e^(−x) )(1−ln(1+e^(−x) ))]_0 ^(+∞)   I = (0+1)−(−1+2(1−ln2))  I = 2ln2

Answered by mathmax by abdo last updated on 10/Jul/20

I =∫_0 ^∞  e^(−x) ln(1+e^x )dx  by parts u^′  =e^(−x)  and v =ln(1+e^x )  I =[−e^(−x) ln(1+e^x )]_0 ^∞  +∫_0 ^∞  e^(−x) ×(e^x /(1+e^x ))dx =ln(2)+∫_0 ^∞  (dx/(1+e^x ))  4hangement e^x  =t give  ∫_0 ^∞  (dx/(1+e^x )) = ∫_1 ^(+∞ )   (dt/(t(1+t)))  =∫_1 ^(+∞) ((1/t)−(1/(t+1)))dt =[ln∣(t/(t+1))∣]_1 ^(+∞)  =−ln((1/2)) =ln(2) ⇒  I =2ln(2)