Question Number 102822 by Dwaipayan Shikari last updated on 11/Jul/20

Σ_(n=1) ^∞ ((n!)/n^n )

Commented byDwaipayan Shikari last updated on 11/Jul/20

RATIO TEST  a_(n+1.) .(1/a_n )=(((n+1)!)/((n+1)^(n+1) )).(n^n /(n!))=((n/(n+1)))^n   lim((1/(1+(1/n))))^n =(1+(1/n))^(−n) =(1/e)    n→∞  Second method  lim nlog((n/(n+1)))=logy  ⇒ n((n/(n+1))−1)=logy ⇒−1=logy⇒y=(1/e)  n→∞  Converges

Answered by mathmax by abdo last updated on 11/Jul/20

convergence ?  let u_n =((n!)/n^n )   we have n! ∼ n^n  e^(−n)  (√(2πn))  (n→∞) ⇒  u_n ∼e^(−n) (√(2πn))   and Σ e^(−n) (√(2πn))is the same nature of ∫_0 ^∞  e^(−t) (√(2πt))dt but  ∫_0 ^∞  (√(2π)) e^(−t)  (√t)dt =(√(2π))∫_0 ^∞  t^((3/2)−1)  e^(−t)  dt =(√(2π))Γ((3/2)) this integral convergez ⇒  Σ u_n  converges..

Commented byDwaipayan Shikari last updated on 11/Jul/20

Can you find the sum sir?

Commented bymathmax by abdo last updated on 12/Jul/20

perhaps by using some relation and formulas...