Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 103255 by Study last updated on 13/Jul/20

lim_(x→0) (((sin^6 (√2)x)/(tan^7 (x/2))))^(cos^(12) x) =???

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\left(\frac{{sin}^{\mathrm{6}} \sqrt{\mathrm{2}}{x}}{{tan}^{\mathrm{7}} \frac{{x}}{\mathrm{2}}}\right)^{{cos}^{\mathrm{12}} {x}} =??? \\ $$

Commented by Dwaipayan Shikari last updated on 13/Jul/20

May be infinity

$$\mathrm{May}\:\mathrm{be}\:\mathrm{infinity} \\ $$

Answered by OlafThorendsen last updated on 13/Jul/20

sinu ∼_0  u  tanu ∼_0  u  Then ((sin^6 (√2)x)/(tan^7 (x/2))) ∼_0  ((((√2)x)^6 )/(((x/2))^7 )) = ((2^3 x^6 )/(x^7 /2^7 )) = ((1024)/x)  And cosx ∼_0  1−(x^2 /2) ⇒ cos^(12) x ∼_0  1−6x^2   lim_(x→0) (((sin^6 (√2)x)/(tan^7 (x/2))))^(cos^(12) x) = lim_(x→0) (((1024)/x))^(1−6x^2 )   lim_(x→0) (((sin^6 (√2)x)/(tan^7 (x/2))))^(cos^(12) x) =  { ((−∞ if x<0)),((+∞ if x>0)) :}

$$\mathrm{sin}{u}\:\underset{\mathrm{0}} {\sim}\:{u} \\ $$$$\mathrm{tan}{u}\:\underset{\mathrm{0}} {\sim}\:{u} \\ $$$$\mathrm{Then}\:\frac{\mathrm{sin}^{\mathrm{6}} \sqrt{\mathrm{2}}{x}}{\mathrm{tan}^{\mathrm{7}} \frac{{x}}{\mathrm{2}}}\:\underset{\mathrm{0}} {\sim}\:\frac{\left(\sqrt{\mathrm{2}}{x}\right)^{\mathrm{6}} }{\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{7}} }\:=\:\frac{\mathrm{2}^{\mathrm{3}} {x}^{\mathrm{6}} }{\frac{{x}^{\mathrm{7}} }{\mathrm{2}^{\mathrm{7}} }}\:=\:\frac{\mathrm{1024}}{{x}} \\ $$$$\mathrm{And}\:\mathrm{cos}{x}\:\underset{\mathrm{0}} {\sim}\:\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\:\mathrm{cos}^{\mathrm{12}} {x}\:\underset{\mathrm{0}} {\sim}\:\mathrm{1}−\mathrm{6}{x}^{\mathrm{2}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}^{\mathrm{6}} \sqrt{\mathrm{2}}{x}}{\mathrm{tan}^{\mathrm{7}} \frac{{x}}{\mathrm{2}}}\right)^{\mathrm{cos}^{\mathrm{12}} {x}} =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1024}}{{x}}\right)^{\mathrm{1}−\mathrm{6}{x}^{\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}^{\mathrm{6}} \sqrt{\mathrm{2}}{x}}{\mathrm{tan}^{\mathrm{7}} \frac{{x}}{\mathrm{2}}}\right)^{\mathrm{cos}^{\mathrm{12}} {x}} =\:\begin{cases}{−\infty\:\mathrm{if}\:{x}<\mathrm{0}}\\{+\infty\:\mathrm{if}\:{x}>\mathrm{0}}\end{cases} \\ $$$$ \\ $$

Commented by Study last updated on 14/Jul/20

 why   cosx∼1−(x^2 /2)⇒cos^(12) x∼1−6x^2

$$\:{why}\:\:\:{cosx}\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\Rightarrow{cos}^{\mathrm{12}} {x}\sim\mathrm{1}−\mathrm{6}{x}^{\mathrm{2}} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\: \\ $$

Commented by OlafThorendsen last updated on 14/Jul/20

cosx ∼ 1−(x^2 /2)  (1+u)^α  ∼ 1+αu  α = 12 and u = −(x^2 /2)  Then cos^(12) x ∼ (1−(x^2 /2))^(12) ∼ 1−6x^2

$$\mathrm{cos}{x}\:\sim\:\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{1}+{u}\right)^{\alpha} \:\sim\:\mathrm{1}+\alpha{u} \\ $$$$\alpha\:=\:\mathrm{12}\:\mathrm{and}\:{u}\:=\:−\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{Then}\:\mathrm{cos}^{\mathrm{12}} {x}\:\sim\:\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{12}} \sim\:\mathrm{1}−\mathrm{6}{x}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com