Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 104101 by ajfour last updated on 19/Jul/20

Commented by ajfour last updated on 19/Jul/20

If the outer triangle is equilateral,  and the two ellipses of same size  and shape, find ratio of area of  outer triangle to inner(blue)  triangle.

$${If}\:{the}\:{outer}\:{triangle}\:{is}\:{equilateral}, \\ $$$${and}\:{the}\:{two}\:{ellipses}\:{of}\:{same}\:{size} \\ $$$${and}\:{shape},\:{find}\:{ratio}\:{of}\:{area}\:{of} \\ $$$${outer}\:{triangle}\:{to}\:{inner}\left({blue}\right) \\ $$$${triangle}. \\ $$

Commented by mr W last updated on 19/Jul/20

only if blue ellipse=yellow  ellipse=incircle of triangle  ⇒((small triangle)/(big triangle))=(1/4)

$${only}\:{if}\:{blue}\:{ellipse}={yellow} \\ $$$${ellipse}={incircle}\:{of}\:{triangle} \\ $$$$\Rightarrow\frac{{small}\:{triangle}}{{big}\:{triangle}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Answered by ajfour last updated on 19/Jul/20

let eq. of blue ellipse be    (x^2 /a^2 )+(((y−b)^2 )/b^2 )=1  Let right side of outer triangle has  eq:   y=x(√3)+c      and as this is  tangent to both ellipses,  first    b^2 x^2 +a^2 (x(√3)+c−b)^2 −a^2 b^2 =0  or    (3a^2 +b^2 )x^2 +2(√3)(a^2 )(c−b)x                            +a^2 (c−b)^2 −a^2 b^2 =0  has double root;  ⇒  12a^4 (c−b)^2 =4a^2 (3a^2 +b^2 )[(c−b)^2 −b^2 ]  ⇒ 3a^2 (c−b)^2 =(3a^2 +b^2 )[(c−b)^2 −b^2 ]  ⇒  (c−b)^2 =3a^2 +b^2      .....(I)  Now eq. of the yellow ellipse is        (x^2 /b^2 )+(((y−a)^2 )/a^2 )=1  y=x(√3)+c   is tangent to this ellipse  too,  hence    a^2 x^2 +b^2 (x(√3)+c−a)^2 −a^2 b^2 =0  (a^2 +3b^2 )x^2 +2(√3)(b^2 )(c−a)x                         +b^2 [(c−a)^2 −a^2 ]=0  has also a double root; ⇒  12b^4 (c−a)^2 =4b^2 (a^2 +3b^2 )[(c−a)^2 −a^2 ]  ⇒  3b^2 (c−a)^2 =(a^2 +3b^2 )[(c−a)^2 −a^2 ]  ⇒  (c−a)^2 = a^2 +3b^2      .....(II)  Now eliminating c  among (I)&(II)     b+(√(3a^2 +b^2 )) = a+(√(a^2 +3b^2 ))  let   (b/a) = μ  ⇒  μ+(√(3+μ^2 ))=1+(√(1+3μ^2 ))    ....(i)  ⇒    μ=1   ★  ⇒   c−a = c−b = 2a =2b  ⇒   a = b = (c/3)  ⇒   (△_(small) /△_(large) ) = (1/4) ■  mrW Sir  you are perfectly right!

$${let}\:{eq}.\:{of}\:{blue}\:{ellipse}\:{be} \\ $$$$\:\:\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\boldsymbol{{a}}^{\mathrm{2}} }+\frac{\left(\boldsymbol{{y}}−\boldsymbol{{b}}\right)^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} }=\mathrm{1} \\ $$$${Let}\:{right}\:{side}\:{of}\:{outer}\:{triangle}\:{has} \\ $$$${eq}:\:\:\:{y}={x}\sqrt{\mathrm{3}}+{c}\:\:\:\:\:\:{and}\:{as}\:{this}\:{is} \\ $$$${tangent}\:{to}\:{both}\:{ellipses},\:\:{first} \\ $$$$\:\:{b}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} \left({x}\sqrt{\mathrm{3}}+{c}−{b}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{0} \\ $$$${or} \\ $$$$\:\:\left(\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{3}}\left({a}^{\mathrm{2}} \right)\left({c}−{b}\right){x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{a}^{\mathrm{2}} \left({c}−{b}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{0} \\ $$$${has}\:{double}\:{root};\:\:\Rightarrow \\ $$$$\mathrm{12}{a}^{\mathrm{4}} \left({c}−{b}\right)^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \left(\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left[\left({c}−{b}\right)^{\mathrm{2}} −{b}^{\mathrm{2}} \right] \\ $$$$\Rightarrow\:\mathrm{3}{a}^{\mathrm{2}} \left({c}−{b}\right)^{\mathrm{2}} =\left(\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left[\left({c}−{b}\right)^{\mathrm{2}} −{b}^{\mathrm{2}} \right] \\ $$$$\Rightarrow\:\:\left({c}−{b}\right)^{\mathrm{2}} =\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \:\:\:\:\:.....\left({I}\right) \\ $$$${Now}\:{eq}.\:{of}\:{the}\:{yellow}\:{ellipse}\:{is} \\ $$$$\:\:\:\:\:\:\frac{{x}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{\left({y}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\mathrm{1} \\ $$$${y}={x}\sqrt{\mathrm{3}}+{c}\:\:\:{is}\:{tangent}\:{to}\:{this}\:{ellipse} \\ $$$${too},\:\:{hence} \\ $$$$\:\:{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} \left({x}\sqrt{\mathrm{3}}+{c}−{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{3}}\left({b}^{\mathrm{2}} \right)\left({c}−{a}\right){x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{b}^{\mathrm{2}} \left[\left({c}−{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right]=\mathrm{0} \\ $$$${has}\:{also}\:{a}\:{double}\:{root};\:\Rightarrow \\ $$$$\mathrm{12}{b}^{\mathrm{4}} \left({c}−{a}\right)^{\mathrm{2}} =\mathrm{4}{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} \right)\left[\left({c}−{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right] \\ $$$$\Rightarrow\:\:\mathrm{3}{b}^{\mathrm{2}} \left({c}−{a}\right)^{\mathrm{2}} =\left({a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} \right)\left[\left({c}−{a}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right] \\ $$$$\Rightarrow\:\:\left({c}−{a}\right)^{\mathrm{2}} =\:{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} \:\:\:\:\:.....\left({II}\right) \\ $$$${Now}\:{eliminating}\:{c}\:\:{among}\:\left({I}\right)\&\left({II}\right) \\ $$$$\:\:\:{b}+\sqrt{\mathrm{3}{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:=\:{a}+\sqrt{{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} } \\ $$$${let}\:\:\:\frac{{b}}{{a}}\:=\:\mu \\ $$$$\Rightarrow\:\:\mu+\sqrt{\mathrm{3}+\mu^{\mathrm{2}} }=\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{3}\mu^{\mathrm{2}} }\:\:\:\:....\left(\boldsymbol{{i}}\right) \\ $$$$\Rightarrow\:\:\:\:\mu=\mathrm{1}\:\:\:\bigstar \\ $$$$\Rightarrow\:\:\:{c}−{a}\:=\:{c}−{b}\:=\:\mathrm{2}{a}\:=\mathrm{2}{b} \\ $$$$\Rightarrow\:\:\:{a}\:=\:{b}\:=\:\frac{{c}}{\mathrm{3}} \\ $$$$\Rightarrow\:\:\:\frac{\bigtriangleup_{{small}} }{\bigtriangleup_{{large}} }\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\blacksquare \\ $$$${mrW}\:{Sir}\:\:{you}\:{are}\:{perfectly}\:{right}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com