Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 104572 by ajfour last updated on 22/Jul/20

Commented by ajfour last updated on 22/Jul/20

A point charge q with mass m  is released at a distance a from  a fixed uniformly charged rod  of length L, charge Q. Find the  speed acquired by point charge  q as it reaches an infinite  distance from the rod.

$${A}\:{point}\:{charge}\:{q}\:{with}\:{mass}\:{m} \\ $$$${is}\:{released}\:{at}\:{a}\:{distance}\:\boldsymbol{{a}}\:{from} \\ $$$${a}\:{fixed}\:{uniformly}\:{charged}\:{rod} \\ $$$${of}\:{length}\:{L},\:{charge}\:{Q}.\:{Find}\:{the} \\ $$$${speed}\:{acquired}\:{by}\:{point}\:{charge} \\ $$$${q}\:{as}\:{it}\:{reaches}\:{an}\:{infinite} \\ $$$${distance}\:{from}\:{the}\:{rod}. \\ $$

Answered by OlafThorendsen last updated on 22/Jul/20

E = (Q/(2πε_0 )).(1/x).(1/(x+L))  F = qE = mx^(••)   ((qQ)/(2πε_0 )).(1/(x(x+L))) = mx^(••)   ((qQ)/(2πε_0 L)).(x^• /(x(x+L))) = mx^(••) x^•  (with v = x^• )  ((qQ)/(2πε_0 L^2 ))x^• [(1/x)−(1/(x+L))] = mx^(••) x^•   ((qQ)/(2πε_0 L^2 )).ln(x/(x+L)) = (1/2)mv^2 +C  t = 0, v = 0 ⇒ C = −((qQ)/(2πε_0 L^2 )).ln(a/(a+L))  (1/2)mv^2  = ((qQ)/(2πε_0 L^2 ))(ln(x/(x+L))−ln(a/(a+L)))  v_∞ ^2  = ((qQ)/(πε_0 mL^2 ))ln((a+L)/a)  ...may be

$$\mathrm{E}\:=\:\frac{\mathrm{Q}}{\mathrm{2}\pi\epsilon_{\mathrm{0}} }.\frac{\mathrm{1}}{{x}}.\frac{\mathrm{1}}{{x}+\mathrm{L}} \\ $$$$\mathrm{F}\:=\:{q}\mathrm{E}\:=\:{m}\overset{\bullet\bullet} {{x}} \\ $$$$\frac{{q}\mathrm{Q}}{\mathrm{2}\pi\epsilon_{\mathrm{0}} }.\frac{\mathrm{1}}{{x}\left({x}+\mathrm{L}\right)}\:=\:{m}\overset{\bullet\bullet} {{x}} \\ $$$$\frac{{q}\mathrm{Q}}{\mathrm{2}\pi\epsilon_{\mathrm{0}} \mathrm{L}}.\frac{\overset{\bullet} {{x}}}{{x}\left({x}+\mathrm{L}\right)}\:=\:{m}\overset{\bullet\bullet} {{x}}\overset{\bullet} {{x}}\:\left(\mathrm{with}\:{v}\:=\:\overset{\bullet} {{x}}\right) \\ $$$$\frac{{q}\mathrm{Q}}{\mathrm{2}\pi\epsilon_{\mathrm{0}} \mathrm{L}^{\mathrm{2}} }\overset{\bullet} {{x}}\left[\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}+\mathrm{L}}\right]\:=\:{m}\overset{\bullet\bullet} {{x}}\overset{\bullet} {{x}} \\ $$$$\frac{{q}\mathrm{Q}}{\mathrm{2}\pi\epsilon_{\mathrm{0}} \mathrm{L}^{\mathrm{2}} }.\mathrm{ln}\frac{{x}}{{x}+\mathrm{L}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} +\mathrm{C} \\ $$$${t}\:=\:\mathrm{0},\:{v}\:=\:\mathrm{0}\:\Rightarrow\:\mathrm{C}\:=\:−\frac{{q}\mathrm{Q}}{\mathrm{2}\pi\epsilon_{\mathrm{0}} \mathrm{L}^{\mathrm{2}} }.\mathrm{ln}\frac{{a}}{{a}+\mathrm{L}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} \:=\:\frac{{q}\mathrm{Q}}{\mathrm{2}\pi\epsilon_{\mathrm{0}} \mathrm{L}^{\mathrm{2}} }\left(\mathrm{ln}\frac{{x}}{{x}+\mathrm{L}}−\mathrm{ln}\frac{{a}}{{a}+\mathrm{L}}\right) \\ $$$${v}_{\infty} ^{\mathrm{2}} \:=\:\frac{{q}\mathrm{Q}}{\pi\epsilon_{\mathrm{0}} {m}\mathrm{L}^{\mathrm{2}} }\mathrm{ln}\frac{{a}+\mathrm{L}}{{a}} \\ $$$$...{may}\:{be} \\ $$

Commented by ajfour last updated on 22/Jul/20

Dont you think Sir,  E=(Q/(4πε_0 ))(1/(x(x+L)))    ?

$${Dont}\:{you}\:{think}\:{Sir}, \\ $$$${E}=\frac{{Q}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{\mathrm{1}}{{x}\left({x}+{L}\right)}\:\:\:\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com