Question Number 104657 by bobhans last updated on 23/Jul/20

(x+yi)^3  = ((10(2y+8i)^2 )/(3−i))  find x & y

Answered by bramlex last updated on 23/Jul/20

(x+yi)^3  = ((10(2y+8i)^2 (3+i))/(10))  (x+yi)^3  = 4(3+i)(y+4i)^2   x^3 +3x^2 yi−3xy^2 −y^3 i =  4(3+i)(y^2 +8yi−16)  x^3 +3x^2 yi−3xy^2 −y^3 i = 4(3y^2 +24yi−48+  y^2 i−8y−16i)  x^3 +3x^2 yi−3xy^2 −y^3 i = 12y^2 +96yi−192+  4y^2 i−32y−64i)  → { ((x^3 −3xy^2  = 12y^2 −192−32y)),((3x^2 yi −y^3 i = 4y^2 i−64i  )) :}  we get    { ((x^3 −3xy^2  = 12y^2 −32y−192)),((3x^2 y−y^3  = 4y^2 −64)) :}