Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 104893 by bramlex last updated on 24/Jul/20

(d^2 y/dx^2 ) + tan x (dy/dx) = sec x + cot x

$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{tan}\:{x}\:\frac{{dy}}{{dx}}\:=\:\mathrm{sec}\:{x}\:+\:\mathrm{cot}\:{x} \\ $$

Answered by mathmax by abdo last updated on 24/Jul/20

y^(′′)  +tanx y^′  =((1+sinx)/(cosx))  let y^′  =z so e ⇒z^′  +tanx z =((1+sinx)/(cosx))  h→z^′  =−tanx z ⇒(z^′ /z) =−tanx ⇒ ln∣z∣ =−∫ tanx dx +c  =−∫ ((sinx)/(cosx))dx +c =ln∣cosx∣ +c ⇒z =k ∣cosx∣ let determine solution on  { x /cosx >0}  mvc method ⇒z^′  =k^′  cosx −ksinx  e ⇒k^′  cosx−ksinx + tamx ×k cosx =((1+sinx)/(cosx)) ⇒k^(′ )  =((1+sinx)/(cos^2 x)) ⇒  k =∫  ((1+sinx)/(cos^2 x))dx =∫  (dx/(cos^2 x)) +∫ ((sinx)/(cos^2 x))dx =(1/(cosx)) +∫ (dx/(cos^2 x))  we have  ∫ (dx/(cos^2 x)) =∫ (1+tan^2 x)dx =tanx  +c ⇒k (x) =(1/(cosx)) +tanx +λ ⇒  z(x) =((1/(cosx)) +tanx +λ)cosx =1+sinx +λcosx  y^′  =z ⇒y^′  =1+sinx +λ cosx ⇒y(x) =∫ (1+sinx +λ cosx)dx  y(x)=x −cosx + λ sinx

$$\mathrm{y}^{''} \:+\mathrm{tanx}\:\mathrm{y}^{'} \:=\frac{\mathrm{1}+\mathrm{sinx}}{\mathrm{cosx}}\:\:\mathrm{let}\:\mathrm{y}^{'} \:=\mathrm{z}\:\mathrm{so}\:\mathrm{e}\:\Rightarrow\mathrm{z}^{'} \:+\mathrm{tanx}\:\mathrm{z}\:=\frac{\mathrm{1}+\mathrm{sinx}}{\mathrm{cosx}} \\ $$$$\mathrm{h}\rightarrow\mathrm{z}^{'} \:=−\mathrm{tanx}\:\mathrm{z}\:\Rightarrow\frac{\mathrm{z}^{'} }{\mathrm{z}}\:=−\mathrm{tanx}\:\Rightarrow\:\mathrm{ln}\mid\mathrm{z}\mid\:=−\int\:\mathrm{tanx}\:\mathrm{dx}\:+\mathrm{c} \\ $$$$=−\int\:\frac{\mathrm{sinx}}{\mathrm{cosx}}\mathrm{dx}\:+\mathrm{c}\:=\mathrm{ln}\mid\mathrm{cosx}\mid\:+\mathrm{c}\:\Rightarrow\mathrm{z}\:=\mathrm{k}\:\mid\mathrm{cosx}\mid\:\mathrm{let}\:\mathrm{determine}\:\mathrm{solution}\:\mathrm{on} \\ $$$$\left\{\:\mathrm{x}\:/\mathrm{cosx}\:>\mathrm{0}\right\}\:\:\mathrm{mvc}\:\mathrm{method}\:\Rightarrow\mathrm{z}^{'} \:=\mathrm{k}^{'} \:\mathrm{cosx}\:−\mathrm{ksinx} \\ $$$$\mathrm{e}\:\Rightarrow\mathrm{k}^{'} \:\mathrm{cosx}−\mathrm{ksinx}\:+\:\mathrm{tamx}\:×\mathrm{k}\:\mathrm{cosx}\:=\frac{\mathrm{1}+\mathrm{sinx}}{\mathrm{cosx}}\:\Rightarrow\mathrm{k}^{'\:} \:=\frac{\mathrm{1}+\mathrm{sinx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:\Rightarrow \\ $$$$\mathrm{k}\:=\int\:\:\frac{\mathrm{1}+\mathrm{sinx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:=\int\:\:\frac{\mathrm{dx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:+\int\:\frac{\mathrm{sinx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\:=\frac{\mathrm{1}}{\mathrm{cosx}}\:+\int\:\frac{\mathrm{dx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\int\:\frac{\mathrm{dx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:=\int\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)\mathrm{dx}\:=\mathrm{tanx}\:\:+\mathrm{c}\:\Rightarrow\mathrm{k}\:\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{cosx}}\:+\mathrm{tanx}\:+\lambda\:\Rightarrow \\ $$$$\mathrm{z}\left(\mathrm{x}\right)\:=\left(\frac{\mathrm{1}}{\mathrm{cosx}}\:+\mathrm{tanx}\:+\lambda\right)\mathrm{cosx}\:=\mathrm{1}+\mathrm{sinx}\:+\lambda\mathrm{cosx} \\ $$$$\mathrm{y}^{'} \:=\mathrm{z}\:\Rightarrow\mathrm{y}^{'} \:=\mathrm{1}+\mathrm{sinx}\:+\lambda\:\mathrm{cosx}\:\Rightarrow\mathrm{y}\left(\mathrm{x}\right)\:=\int\:\left(\mathrm{1}+\mathrm{sinx}\:+\lambda\:\mathrm{cosx}\right)\mathrm{dx} \\ $$$$\mathrm{y}\left(\mathrm{x}\right)=\mathrm{x}\:−\mathrm{cosx}\:+\:\lambda\:\mathrm{sinx} \\ $$

Commented by mathmax by abdo last updated on 24/Jul/20

sorry i have solved y^(′′)  +tanx y^′  =secx +tanx but the way is the same...

$$\mathrm{sorry}\:\mathrm{i}\:\mathrm{have}\:\mathrm{solved}\:\mathrm{y}^{''} \:+\mathrm{tanx}\:\mathrm{y}^{'} \:=\mathrm{secx}\:+\mathrm{tanx}\:\mathrm{but}\:\mathrm{the}\:\mathrm{way}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}... \\ $$

Commented by bramlex last updated on 24/Jul/20

ok sir . thank you

$${ok}\:{sir}\:.\:{thank}\:{you} \\ $$

Commented by mathmax by abdo last updated on 24/Jul/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com