Question Number 105018 by bemath last updated on 25/Jul/20

(((√((√5)+2)) + (√((√5)−2)))/(√((√5)+1))) ?

Commented bybemath last updated on 25/Jul/20

thank you all

Answered by som(math1967) last updated on 25/Jul/20

let (((√((√5)+2))+(√((√5)−2)))/(√((√5)+1)))=p  ⇒{(√((√5)+2))+(√((√5)−2))}^2 =p^2 ((√5)+1)  (√5)+2+(√5)−2+2(√(5−2^2 ))=p^2 ((√5)+1{  2(√5)+2=p^2 ((√5)+1)  ∴p^2 =((2((√5)+1))/(((√5)+1)))=2  ∴p=(√2) ans

Answered by Dwaipayan Shikari last updated on 25/Jul/20

a^2 =(((√5)+2+(√5)−2+2(√(5−4)))/((√5)+1))=2(((√5)+1)/((√5)+1))=2  {take it as a}  a=(√2)

Answered by john santu last updated on 25/Jul/20

((√(((√((√5)+2))+(√((√5)−2)))^2 ))/(√((√5)+1))) =   ((√(((√((√5)+2)))^2 +2(√(((√5)+2)((√5)−2)))+((√((√5)−2)))^2 ))/(√((√5)+1)))  = ((√((√5)+2+2(√(5−4))+(√5)−2))/(√((√5)+1)))  = ((√(2(√5)+2))/(√((√5)+1))) = (((√2) .(√((√5)+1)))/(√((√5)+1))) = (√2)   (JS ⊛)