Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 105410 by john santu last updated on 28/Jul/20

lim_(x→0) ((x(1+a cos x)−bsin x)/x^5 ) = 1  find a & b

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\left(\mathrm{1}+{a}\:\mathrm{cos}\:{x}\right)−{b}\mathrm{sin}\:{x}}{{x}^{\mathrm{5}} }\:=\:\mathrm{1} \\ $$ $${find}\:{a}\:\&\:{b}\: \\ $$

Answered by bobhans last updated on 29/Jul/20

lim_(x→0) ((x(1+a(1−(1/2)x^2 +(1/(24))x^4 ))−b(x−(1/6)x^3 +(x^5 /(120))))/x^5 )=1  lim_(x→0) ((x(1+a−(1/2)ax^2 +(1/(24))ax^4 )−(bx−(1/6)bx^3 +(b/(120))x^5 ))/x^5 )=1  lim_(x→0) (((1+a−b)x+((1/6)b−(1/2)a)x^3 +((1/(24))a−(1/(120))b)x^5 )/x^5 )=1  (1)1+a−b=0 ; a−b=−1  (2)(1/6)b−(1/2)a=0 ; b=3a  (3)(1/(24))a−(1/(120))b=1;a=(1/5)b  the question inconsistent

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\left(\mathrm{1}+{a}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{24}}{x}^{\mathrm{4}} \right)\right)−{b}\left({x}−\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} +\frac{{x}^{\mathrm{5}} }{\mathrm{120}}\right)}{{x}^{\mathrm{5}} }=\mathrm{1} \\ $$ $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\left(\mathrm{1}+{a}−\frac{\mathrm{1}}{\mathrm{2}}{ax}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{24}}{ax}^{\mathrm{4}} \right)−\left({bx}−\frac{\mathrm{1}}{\mathrm{6}}{bx}^{\mathrm{3}} +\frac{{b}}{\mathrm{120}}{x}^{\mathrm{5}} \right)}{{x}^{\mathrm{5}} }=\mathrm{1} \\ $$ $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+{a}−{b}\right){x}+\left(\frac{\mathrm{1}}{\mathrm{6}}{b}−\frac{\mathrm{1}}{\mathrm{2}}{a}\right){x}^{\mathrm{3}} +\left(\frac{\mathrm{1}}{\mathrm{24}}{a}−\frac{\mathrm{1}}{\mathrm{120}}{b}\right){x}^{\mathrm{5}} }{{x}^{\mathrm{5}} }=\mathrm{1} \\ $$ $$\left(\mathrm{1}\right)\mathrm{1}+{a}−{b}=\mathrm{0}\:;\:{a}−{b}=−\mathrm{1} \\ $$ $$\left(\mathrm{2}\right)\frac{\mathrm{1}}{\mathrm{6}}{b}−\frac{\mathrm{1}}{\mathrm{2}}{a}=\mathrm{0}\:;\:{b}=\mathrm{3}{a} \\ $$ $$\left(\mathrm{3}\right)\frac{\mathrm{1}}{\mathrm{24}}{a}−\frac{\mathrm{1}}{\mathrm{120}}{b}=\mathrm{1};{a}=\frac{\mathrm{1}}{\mathrm{5}}{b} \\ $$ $${the}\:{question}\:{inconsistent} \\ $$

Commented by1549442205PVT last updated on 29/Jul/20

I think that in the question need to give   three unknown

$$\mathrm{I}\:\mathrm{think}\:\mathrm{that}\:\mathrm{in}\:\mathrm{the}\:\mathrm{question}\:\mathrm{need}\:\mathrm{to}\:\mathrm{give}\: \\ $$ $$\mathrm{three}\:\mathrm{unknown}\: \\ $$

Answered by Dwaipayan Shikari last updated on 29/Jul/20

lim_(x→0) ((x(1+acosx)−bsinx)/x^5 )=((xa(−sinx)+acosx−bcosx)/(5x^4 ))  =((xa(−cosx)+a(−sinx)+a(−sinx)+bsinx)/(20x^3 ))  =((xasinx+a(−cosx)+a(−cosx)+a(−cosx)+bcosx)/(60x^2 ))  =((xacosx+asinx+3asinx−bsinx)/(120x))or((xa(−sinx)+acosx+4acosx−bcosx)/(120))  =((acosx)/(120))+((ax)/(120x))+((3ax)/(120x))−((bx)/(120x))     or  ((5acosx−bcosx)/(120))  =(a/(24))−(b/(120))                                            ⇒(a/(24))−(b/(120))=1  5a−b=120→(1)  lim_(x→0) ((x(1+acosx)−bsinx)/x^5 )=1  1+acosx−b=0  1+a=b→(2)  5a−1−a=120  a=((121)/4)  b=((125)/4)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\left(\mathrm{1}+{acosx}\right)−{bsinx}}{{x}^{\mathrm{5}} }=\frac{{xa}\left(−{sinx}\right)+{acosx}−{bcosx}}{\mathrm{5}{x}^{\mathrm{4}} } \\ $$ $$=\frac{{xa}\left(−{cosx}\right)+{a}\left(−{sinx}\right)+{a}\left(−{sinx}\right)+{bsinx}}{\mathrm{20}{x}^{\mathrm{3}} } \\ $$ $$=\frac{{xasinx}+{a}\left(−{cosx}\right)+{a}\left(−{cosx}\right)+{a}\left(−{cosx}\right)+{bcosx}}{\mathrm{60}{x}^{\mathrm{2}} } \\ $$ $$=\frac{{xacosx}+{asinx}+\mathrm{3}{asinx}−{bsinx}}{\mathrm{120}{x}}{or}\frac{{xa}\left(−{sinx}\right)+{acosx}+\mathrm{4}{acosx}−{bcosx}}{\mathrm{120}} \\ $$ $$=\frac{{acosx}}{\mathrm{120}}+\frac{{ax}}{\mathrm{120}{x}}+\frac{\mathrm{3}{ax}}{\mathrm{120}{x}}−\frac{{bx}}{\mathrm{120}{x}}\:\:\:\:\:{or}\:\:\frac{\mathrm{5}{acosx}−{bcosx}}{\mathrm{120}} \\ $$ $$=\frac{{a}}{\mathrm{24}}−\frac{{b}}{\mathrm{120}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$ $$\Rightarrow\frac{{a}}{\mathrm{24}}−\frac{{b}}{\mathrm{120}}=\mathrm{1} \\ $$ $$\mathrm{5}{a}−{b}=\mathrm{120}\rightarrow\left(\mathrm{1}\right) \\ $$ $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\left(\mathrm{1}+{acosx}\right)−{bsinx}}{{x}^{\mathrm{5}} }=\mathrm{1} \\ $$ $$\mathrm{1}+{acosx}−{b}=\mathrm{0} \\ $$ $$\mathrm{1}+{a}={b}\rightarrow\left(\mathrm{2}\right) \\ $$ $$\mathrm{5}{a}−\mathrm{1}−{a}=\mathrm{120} \\ $$ $${a}=\frac{\mathrm{121}}{\mathrm{4}} \\ $$ $${b}=\frac{\mathrm{125}}{\mathrm{4}} \\ $$ $$ \\ $$

Commented by1549442205PVT last updated on 30/Jul/20

♮ lim((x(1+acosx)−bsinx)/x^5 )=1  1+acosx−b=0  ε(1)  I think that ocurred a mistake at this  place.It is only possible   1+acosx−b=0⇒ lim((x(1+acosx)−bsinx)/x^5 )=1  and it is impossible  ⇒lim((x(1+acosx)−bsinx)/x^5 )=1⇒1+acosx−b=0  it is also like as 1+acosx−kb=0  ⇒lim((x(1+acosx)−bsinx)/x^5 )=1  If (1) is true then  1+acosx−kb=0  is also true.Sir should see once again  sir′argument

$$\natural\:\mathrm{lim}\frac{{x}\left(\mathrm{1}+{acosx}\right)−{bsinx}}{{x}^{\mathrm{5}} }=\mathrm{1} \\ $$ $$\mathrm{1}+{acosx}−{b}=\mathrm{0}\:\:\varepsilon\left(\mathrm{1}\right) \\ $$ $$\mathrm{I}\:\mathrm{think}\:\mathrm{that}\:\mathrm{ocurred}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{at}\:\mathrm{this} \\ $$ $$\mathrm{place}.\mathrm{It}\:\mathrm{is}\:\mathrm{only}\:\mathrm{possible}\: \\ $$ $$\mathrm{1}+{acosx}−{b}=\mathrm{0}\Rightarrow\:\mathrm{lim}\frac{{x}\left(\mathrm{1}+{acosx}\right)−{bsinx}}{{x}^{\mathrm{5}} }=\mathrm{1} \\ $$ $$\mathrm{and}\:\mathrm{it}\:\mathrm{is}\:\mathrm{impossible} \\ $$ $$\Rightarrow\mathrm{lim}\frac{{x}\left(\mathrm{1}+{acosx}\right)−{bsinx}}{{x}^{\mathrm{5}} }=\mathrm{1}\Rightarrow\mathrm{1}+{acosx}−{b}=\mathrm{0} \\ $$ $$\mathrm{it}\:\mathrm{is}\:\mathrm{also}\:\mathrm{like}\:\mathrm{as}\:\mathrm{1}+\mathrm{acosx}−\mathrm{kb}=\mathrm{0} \\ $$ $$\Rightarrow\mathrm{lim}\frac{{x}\left(\mathrm{1}+{acosx}\right)−{bsinx}}{{x}^{\mathrm{5}} }=\mathrm{1} \\ $$ $$\mathrm{If}\:\left(\mathrm{1}\right)\:\mathrm{is}\:\mathrm{true}\:\mathrm{then}\:\:\mathrm{1}+\mathrm{acosx}−\mathrm{kb}=\mathrm{0} \\ $$ $$\mathrm{is}\:\mathrm{also}\:\mathrm{true}.\mathrm{Sir}\:\mathrm{should}\:\mathrm{see}\:\mathrm{once}\:\mathrm{again} \\ $$ $$\mathrm{sir}'\mathrm{argument} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com