Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 105498 by Dwaipayan Shikari last updated on 29/Jul/20

lim_(n→∞)  (Π_(k=1) ^n ((1/k)))^(2/n)

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\frac{\mathrm{1}}{{k}}\right)\right)^{\frac{\mathrm{2}}{{n}}} \\ $$

Commented by JDamian last updated on 29/Jul/20

"From n=1 up to n"? -- Please, review your question

Commented by Ar Brandon last updated on 29/Jul/20

You mean lim_(n→∞) [Π_(k=1) ^n ((1/k))]^(2/n) , lim_(n→∞) [Π_(k=1) ^n ((1/n))]^(2/k) , lim_(n→∞) [Π_(k=1) ^n ((1/k))]^(2/k)   Or that′s just how it is ? I felt it should be otherwise.

$$\mathrm{You}\:\mathrm{mean}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{k}}\right)\right]^{\frac{\mathrm{2}}{\mathrm{n}}} ,\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right]^{\frac{\mathrm{2}}{\mathrm{k}}} ,\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{k}}\right)\right]^{\frac{\mathrm{2}}{\mathrm{k}}} \\ $$$$\mathrm{Or}\:\mathrm{that}'\mathrm{s}\:\mathrm{just}\:\mathrm{how}\:\mathrm{it}\:\mathrm{is}\:?\:\mathrm{I}\:\mathrm{felt}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{otherwise}. \\ $$

Commented by Dwaipayan Shikari last updated on 29/Jul/20

The first one

$${The}\:{first}\:{one} \\ $$

Answered by mathmax by abdo last updated on 29/Jul/20

let A_n ={Π_(k=1) ^n ((1/k))}^(2/(n ))  ⇒A_n =e^((2/n)ln(Π_(k=1) ^n   (1/k)))   but (2/n)ln(Π_(k=1) ^n  (1/k)) =(2/n) ln((1/(n!))) =−(2/n)ln(n!)  n! ∼ n^n  e^(−n) (√(2πn)) ⇒ln(n!) ∼nlnn−n +ln((√(2π))) +(1/2)ln(n) ⇒  (2/n)ln(n!) ∼2ln(n)−2+2((ln((√(2π))))/n) +((2ln(n))/n) ⇒  lim_(n→+∞)  −(2/n)ln(n!) =−∞ ⇒lim_(n→+∞)  A_n =0

$$\mathrm{let}\:\mathrm{A}_{\mathrm{n}} =\left\{\prod_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\frac{\mathrm{1}}{\mathrm{k}}\right)\right\}^{\frac{\mathrm{2}}{\mathrm{n}\:}} \:\Rightarrow\mathrm{A}_{\mathrm{n}} =\mathrm{e}^{\frac{\mathrm{2}}{\mathrm{n}}\mathrm{ln}\left(\prod_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\:\frac{\mathrm{1}}{\mathrm{k}}\right)} \\ $$$$\mathrm{but}\:\frac{\mathrm{2}}{\mathrm{n}}\mathrm{ln}\left(\prod_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{k}}\right)\:=\frac{\mathrm{2}}{\mathrm{n}}\:\mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{n}!}\right)\:=−\frac{\mathrm{2}}{\mathrm{n}}\mathrm{ln}\left(\mathrm{n}!\right) \\ $$$$\mathrm{n}!\:\sim\:\mathrm{n}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\:\Rightarrow\mathrm{ln}\left(\mathrm{n}!\right)\:\sim\mathrm{nlnn}−\mathrm{n}\:+\mathrm{ln}\left(\sqrt{\mathrm{2}\pi}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{n}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{2}}{\mathrm{n}}\mathrm{ln}\left(\mathrm{n}!\right)\:\sim\mathrm{2ln}\left(\mathrm{n}\right)−\mathrm{2}+\mathrm{2}\frac{\mathrm{ln}\left(\sqrt{\left.\mathrm{2}\pi\right)}\right.}{\mathrm{n}}\:+\frac{\mathrm{2ln}\left(\mathrm{n}\right)}{\mathrm{n}}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:−\frac{\mathrm{2}}{\mathrm{n}}\mathrm{ln}\left(\mathrm{n}!\right)\:=−\infty\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{A}_{\mathrm{n}} =\mathrm{0} \\ $$

Commented by Dwaipayan Shikari last updated on 29/Jul/20

Thanking you

$${Thanking}\:{you} \\ $$

Commented by Ar Brandon last updated on 29/Jul/20

Thank you Sir. May I know how you derived the  identity n! ∼ n^n  e^(−n) (√(2πn))

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}.\:\mathrm{May}\:\mathrm{I}\:\mathrm{know}\:\mathrm{how}\:\mathrm{you}\:\mathrm{derived}\:\mathrm{the} \\ $$$$\mathrm{identity}\:\mathrm{n}!\:\sim\:\mathrm{n}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\: \\ $$

Commented by PRITHWISH SEN 2 last updated on 29/Jul/20

starling approximation for higher value of n

$$\mathrm{starling}\:\mathrm{approximation}\:\mathrm{for}\:\mathrm{higher}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n} \\ $$

Commented by Ar Brandon last updated on 29/Jul/20

OK thanks

Commented by mathmax by abdo last updated on 30/Jul/20

sir brandon this is stirling formulae for the proot enter to  internet you find a lots of methods for this...

$$\mathrm{sir}\:\mathrm{brandon}\:\mathrm{this}\:\mathrm{is}\:\mathrm{stirling}\:\mathrm{formulae}\:\mathrm{for}\:\mathrm{the}\:\mathrm{proot}\:\mathrm{enter}\:\mathrm{to} \\ $$$$\mathrm{internet}\:\mathrm{you}\:\mathrm{find}\:\mathrm{a}\:\mathrm{lots}\:\mathrm{of}\:\mathrm{methods}\:\mathrm{for}\:\mathrm{this}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com