Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105504 by bemath last updated on 29/Jul/20

(1)lim_(x→0) ((∫_( 0) ^( x^2 ) sec^2 t dt)/(x sin x)) ?  (2) ∫_(−π/2) ^(π/2) (√(sec x−cos x)) dx ?  (3)In a triangle if tan A=2sin 2C  and 3cos A=2sin Bsin C. find C

$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\:\mathrm{0}} ^{\:{x}^{\mathrm{2}} } \mathrm{sec}\:^{\mathrm{2}} {t}\:{dt}}{{x}\:\mathrm{sin}\:{x}}\:? \\ $$$$\left(\mathrm{2}\right)\:\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\sqrt{\mathrm{sec}\:{x}−\mathrm{cos}\:{x}}\:{dx}\:? \\ $$$$\left(\mathrm{3}\right){In}\:{a}\:{triangle}\:{if}\:\mathrm{tan}\:{A}=\mathrm{2sin}\:\mathrm{2}{C} \\ $$$${and}\:\mathrm{3cos}\:{A}=\mathrm{2sin}\:{B}\mathrm{sin}\:{C}.\:{find}\:{C} \\ $$

Answered by Dwaipayan Shikari last updated on 29/Jul/20

1)lim_(x→0) ((∫_0 ^x^2  sec^2 tdt)/(xsinx))=lim_(x→0) (([tan t]_0 ^x^2  )/x^2 )                  {    sinx→x  =lim_(x→0) ((tan x^2 )/x^2 )=1

$$\left.\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{{x}^{\mathrm{2}} } {sec}^{\mathrm{2}} {tdt}}{{xsinx}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[{tan}\:{t}\right]_{\mathrm{0}} ^{{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{\:\:\:\:{sinx}\rightarrow{x}\right. \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{tan}\:{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} }=\mathrm{1} \\ $$

Answered by john santu last updated on 29/Jul/20

(1)lim_(x→0)  ((2x sec^2 (x^2 ))/(sin x+x cos x)) =  lim_(x→0)  ((2x)/(sin (x)cos^2 (x^2 )+x cos x)) =  lim_(x→0) (2/((((sin x)/x))cos^2 (x^2 )+cos x)) = (2/(1+1))=1  (JS ♠★)

$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}\:\mathrm{sec}\:^{\mathrm{2}} \left({x}^{\mathrm{2}} \right)}{\mathrm{sin}\:{x}+{x}\:\mathrm{cos}\:{x}}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}}{\mathrm{sin}\:\left({x}\right)\mathrm{cos}\:^{\mathrm{2}} \left({x}^{\mathrm{2}} \right)+{x}\:\mathrm{cos}\:{x}}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}}{\left(\frac{\mathrm{sin}\:{x}}{{x}}\right)\mathrm{cos}\:^{\mathrm{2}} \left({x}^{\mathrm{2}} \right)+\mathrm{cos}\:{x}}\:=\:\frac{\mathrm{2}}{\mathrm{1}+\mathrm{1}}=\mathrm{1} \\ $$$$\left({JS}\:\spadesuit\bigstar\right) \\ $$

Answered by Ar Brandon last updated on 29/Jul/20

1\lim_(x→0) ((∫_0 ^x^2  sec^2 tdt)/(xsinx))=lim_(x→0) (([tanx]_0 ^x^2  )/(xsinx))=lim_(x→0) ((tanx^2 )/(xsinx))                                   =lim_(x→0) (x^2 /(xsinx))=lim_(x→0) (x/(sinx))=lim_(x→0) (1/(cosx))=1

$$\mathrm{1}\backslash\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\mathrm{x}^{\mathrm{2}} } \mathrm{sec}^{\mathrm{2}} \mathrm{tdt}}{\mathrm{xsinx}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[\mathrm{tanx}\right]_{\mathrm{0}} ^{\mathrm{x}^{\mathrm{2}} } }{\mathrm{xsinx}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tanx}^{\mathrm{2}} }{\mathrm{xsinx}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{xsinx}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}}{\mathrm{sinx}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{cosx}}=\mathrm{1} \\ $$

Answered by Dwaipayan Shikari last updated on 29/Jul/20

∫_(−(π/2)) ^(π/2) ((√(1−cos^2 x))/(√(cosx)))=−2∫_0 ^(π/2) −((sinx)/(√(cosx)))dx=−2∫_1 ^0 ((2tdt)/t)=4∫_0 ^1 dt=4                                     cos x=t^2

$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{\mathrm{1}−{cos}^{\mathrm{2}} {x}}}{\sqrt{{cosx}}}=−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\frac{{sinx}}{\sqrt{{cosx}}}{dx}=−\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{0}} \frac{\mathrm{2}{tdt}}{{t}}=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} {dt}=\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cos}\:{x}={t}^{\mathrm{2}} \\ $$

Commented by Dwaipayan Shikari last updated on 29/Jul/20

Hey Brandon sir , can you take a try on my question?�� Question no 105498

Commented by Ar Brandon last updated on 29/Jul/20

��OK bro, but I'm not Sir. Next 2 years I'll be thrice as old as I was e^2.3 years ago to the nearest round figure.��

Commented by Dwaipayan Shikari last updated on 29/Jul/20

����������My current age is e^2.79

Commented by Dwaipayan Shikari last updated on 29/Jul/20

A high school one

Commented by Ar Brandon last updated on 29/Jul/20

��

Answered by Ar Brandon last updated on 29/Jul/20

I=∫_(−(π/2)) ^(π/2) (√(secx−cosx))dx=2∫_0 ^(π/2) (√((1−cos^2 x)/(cosx)))dx=2∫_0 ^(π/2) ((sinx)/(√(cosx)))dx     =−2∫_0 ^(π/2) ((d(cosx))/(√(cosx)))=−4[(√(cosx))]_0 ^(π/2) =4

$$\mathcal{I}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{secx}−\mathrm{cosx}}\mathrm{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{x}}{\mathrm{cosx}}}\mathrm{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sinx}}{\sqrt{\mathrm{cosx}}}\mathrm{dx} \\ $$$$\:\:\:=−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{d}\left(\mathrm{cosx}\right)}{\sqrt{\mathrm{cosx}}}=−\mathrm{4}\left[\sqrt{\mathrm{cosx}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\mathrm{4} \\ $$

Answered by mathmax by abdo last updated on 29/Jul/20

1)let f(x) =((∫_0 ^x^2   sec^2 tdt)/(xsinx)) ⇒f(x) =((tan(x^2 ))/(xsinx)) ∼ (x^2 /x^2 ) =1 ⇒  lim_(x→0) f(x) =1

$$\left.\mathrm{1}\right)\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\int_{\mathrm{0}} ^{\mathrm{x}^{\mathrm{2}} } \:\mathrm{sec}^{\mathrm{2}} \mathrm{tdt}}{\mathrm{xsinx}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{tan}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{xsinx}}\:\sim\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:=\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{1} \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 29/Jul/20

2) I =∫_(−(π/2)) ^(π/2) (√((1/(cosx))−cosx))dx =∫_(−(π/2)) ^(π/2) (√((1−cos^2 x)/(cosx)))dx  =2∫_0 ^(π/2) ((sinx)/(√(cosx))) dx   =_((√(cosx))=t) −   2 ∫_1 ^0  ((√(1−t^4 ))/t)((2t)/(√(1−t^4 ))) dt =4 ∫_0 ^1  dt =4  (cosx =t^2  ⇒x =arcos(t^2 ))

$$\left.\mathrm{2}\right)\:\mathrm{I}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\mathrm{1}}{\mathrm{cosx}}−\mathrm{cosx}}\mathrm{dx}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{x}}{\mathrm{cosx}}}\mathrm{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sinx}}{\sqrt{\mathrm{cosx}}}\:\mathrm{dx}\:\:\:=_{\sqrt{\mathrm{cosx}}=\mathrm{t}} −\:\:\:\mathrm{2}\:\int_{\mathrm{1}} ^{\mathrm{0}} \:\frac{\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{4}} }}{\mathrm{t}}\frac{\mathrm{2t}}{\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{4}} }}\:\mathrm{dt}\:=\mathrm{4}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{dt}\:=\mathrm{4} \\ $$$$\left(\mathrm{cosx}\:=\mathrm{t}^{\mathrm{2}} \:\Rightarrow\mathrm{x}\:=\mathrm{arcos}\left(\mathrm{t}^{\mathrm{2}} \right)\right) \\ $$

Answered by bramlex last updated on 29/Jul/20

(3) A = 180°−(B+C)  cos A=−cos (B+C)  →((2sin B sin C)/3) =−{ cos B cos C−sinB sinC}  2sin B sin C = −3cos B cos C−3sinB sin C  5sin B sin C = −3 cos B cos C  →tan B tan C = −(3/5)...(1)  tan A = −tan (B+C)  →2sin 2C = −{((tan B+tan C)/(1−tan Btan C))}  →2sin 2C = −{((tan B+tan C)/(8/5))}  ((16)/5) sin 2C = −tan B−tan C ...(2)

$$\left(\mathrm{3}\right)\:{A}\:=\:\mathrm{180}°−\left({B}+{C}\right) \\ $$$$\mathrm{cos}\:{A}=−\mathrm{cos}\:\left({B}+{C}\right) \\ $$$$\rightarrow\frac{\mathrm{2sin}\:{B}\:\mathrm{sin}\:{C}}{\mathrm{3}}\:=−\left\{\:\mathrm{cos}\:{B}\:\mathrm{cos}\:{C}−\mathrm{sin}{B}\:\mathrm{sin}{C}\right\} \\ $$$$\mathrm{2sin}\:{B}\:\mathrm{sin}\:{C}\:=\:−\mathrm{3cos}\:{B}\:\mathrm{cos}\:{C}−\mathrm{3sin}{B}\:\mathrm{sin}\:{C} \\ $$$$\mathrm{5sin}\:{B}\:\mathrm{sin}\:{C}\:=\:−\mathrm{3}\:\mathrm{cos}\:{B}\:\mathrm{cos}\:{C} \\ $$$$\rightarrow\mathrm{tan}\:{B}\:\mathrm{tan}\:{C}\:=\:−\frac{\mathrm{3}}{\mathrm{5}}...\left(\mathrm{1}\right) \\ $$$$\mathrm{tan}\:{A}\:=\:−\mathrm{tan}\:\left({B}+{C}\right) \\ $$$$\rightarrow\mathrm{2sin}\:\mathrm{2}{C}\:=\:−\left\{\frac{\mathrm{tan}\:{B}+\mathrm{tan}\:{C}}{\mathrm{1}−\mathrm{tan}\:{B}\mathrm{tan}\:{C}}\right\} \\ $$$$\rightarrow\mathrm{2sin}\:\mathrm{2}{C}\:=\:−\left\{\frac{\mathrm{tan}\:{B}+\mathrm{tan}\:{C}}{\frac{\mathrm{8}}{\mathrm{5}}}\right\} \\ $$$$\frac{\mathrm{16}}{\mathrm{5}}\:\mathrm{sin}\:\mathrm{2}{C}\:=\:−\mathrm{tan}\:{B}−\mathrm{tan}\:{C}\:...\left(\mathrm{2}\right) \\ $$

Answered by Ar Brandon last updated on 29/Jul/20

3\  A+B+C=π.........(1)  tanA=2sin2C......(2)  3cosA=2sinBsinC(3)  (1) in (3)⇒3cosA=2sin(π−(A+C))sinC    ⇒3cosA=2sin(A+B)sinC    ⇒−3cosA=cos(A+2C)−cosA    ⇒−2cosA=cos(A+2C)  From (2), tanA=2sin2C    ⇒sinA=2sin2CcosA    ⇒sinA=sin(A+2C)+sin(A−2C)                Stucked !!!

$$\mathrm{3}\backslash \\ $$$$\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi.........\left(\mathrm{1}\right) \\ $$$$\mathrm{tanA}=\mathrm{2sin2C}......\left(\mathrm{2}\right) \\ $$$$\mathrm{3cosA}=\mathrm{2sinBsinC}\left(\mathrm{3}\right) \\ $$$$\left(\mathrm{1}\right)\:\mathrm{in}\:\left(\mathrm{3}\right)\Rightarrow\mathrm{3cosA}=\mathrm{2sin}\left(\pi−\left(\mathrm{A}+\mathrm{C}\right)\right)\mathrm{sinC} \\ $$$$\:\:\Rightarrow\mathrm{3cosA}=\mathrm{2sin}\left(\mathrm{A}+\mathrm{B}\right)\mathrm{sinC} \\ $$$$\:\:\Rightarrow−\mathrm{3cosA}=\mathrm{cos}\left(\mathrm{A}+\mathrm{2C}\right)−\mathrm{cosA} \\ $$$$\:\:\Rightarrow−\mathrm{2cosA}=\mathrm{cos}\left(\mathrm{A}+\mathrm{2C}\right) \\ $$$$\mathrm{From}\:\left(\mathrm{2}\right),\:\mathrm{tanA}=\mathrm{2sin2C} \\ $$$$\:\:\Rightarrow\mathrm{sinA}=\mathrm{2sin2CcosA} \\ $$$$\:\:\Rightarrow\mathrm{sinA}=\mathrm{sin}\left(\mathrm{A}+\mathrm{2C}\right)+\mathrm{sin}\left(\mathrm{A}−\mathrm{2C}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{Stucked}\:!!! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com