Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 106315 by pticantor last updated on 04/Aug/20

show that  ⊛∀ (x_1 ,x_2 ,.....,x_(n ) )∈R^n   (Σ_(k=1) ^n x_k )^2 ≤nΣ_(k=1) ^n x_k ^2   ⊛a,b>0  p(x)=x^n +ax+b=0  could not have more than 3  reals solutions

$$\boldsymbol{{show}}\:\boldsymbol{{that}} \\ $$ $$\circledast\forall\:\left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,.....,\boldsymbol{{x}}_{\boldsymbol{{n}}\:} \right)\in\mathbb{R}^{\boldsymbol{{n}}} \\ $$ $$\left(\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\boldsymbol{{x}}_{\boldsymbol{{k}}} \right)^{\mathrm{2}} \leqslant\boldsymbol{{n}}\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\boldsymbol{{x}}_{\boldsymbol{{k}}} ^{\mathrm{2}} \\ $$ $$\circledast\boldsymbol{{a}},\boldsymbol{{b}}>\mathrm{0} \\ $$ $$\boldsymbol{{p}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{x}}^{\boldsymbol{{n}}} +\boldsymbol{{ax}}+\boldsymbol{{b}}=\mathrm{0} \\ $$ $$\boldsymbol{{could}}\:\boldsymbol{{not}}\:\boldsymbol{{have}}\:\boldsymbol{{more}}\:\boldsymbol{{than}}\:\mathrm{3} \\ $$ $$\boldsymbol{{reals}}\:\boldsymbol{{solutions}} \\ $$

Answered by Dwaipayan Shikari last updated on 04/Aug/20

Σ_(k=1) ^n x_k ^2 .Σ_(k=1) ^n 1≥(Σ(x_k .1))^2 {Cauchy schwarz inequality}  nΣ_(k=1) ^n x_k ^2 ≥(Σ_(k=1) ^n x_k )^2      {Σ^n (1)=n    It means  n(x_1 ^2 +x_2 ^2 +x_3 ^2 +x_4 ^2 +....)≥(x_1 +x_2 +x_3 +x_4 +.....)^2   (x_1 ^2 +x_2 ^2 +x_3 ^2 +x_4 ^2 +...)≥(((x_1 +x_2 +x_3 +x_4 +......)/(√n)))^2

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{k}} ^{\mathrm{2}} .\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{1}\geqslant\left(\Sigma\left({x}_{{k}} .\mathrm{1}\right)\right)^{\mathrm{2}} \left\{{Cauchy}\:{schwarz}\:{inequality}\right\} \\ $$ $${n}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{k}} ^{\mathrm{2}} \geqslant\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{k}} \right)^{\mathrm{2}} \:\:\:\:\:\left\{\overset{{n}} {\sum}\left(\mathrm{1}\right)={n}\right. \\ $$ $$ \\ $$ $${It}\:{means} \\ $$ $${n}\left({x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} +{x}_{\mathrm{3}} ^{\mathrm{2}} +{x}_{\mathrm{4}} ^{\mathrm{2}} +....\right)\geqslant\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +{x}_{\mathrm{4}} +.....\right)^{\mathrm{2}} \\ $$ $$\left({x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} +{x}_{\mathrm{3}} ^{\mathrm{2}} +{x}_{\mathrm{4}} ^{\mathrm{2}} +...\right)\geqslant\left(\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +{x}_{\mathrm{4}} +......}{\sqrt{{n}}}\right)^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com