Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 106779 by bobhans last updated on 07/Aug/20

        ^(≻bobhans≺)   How do you find a point on the curve y=x^2   closest to the point (0,18) ?

$$\:\:\:\:\:\:\:\:\:^{\succ\mathrm{bobhans}\prec} \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{18}\right)\:? \\ $$

Answered by john santu last updated on 07/Aug/20

      ^(@JS@)   let ((√x) ,x) a point on the curve  y=x^2  and closest to point (0,18)  so we have d = (√(((√x)−0)^2 +(x−18)^2 ))  d = (√(x+x^2 −36x+324))   d = (√(x^2 −35x+324))  put d′ = 0 ⇒d′=((2x−35)/(2(√(x^2 −35x+324))))=0  →so the coordinates point we  search is (±(√((35)/2)) , ((35)/2)) .

$$\:\:\:\:\:\:\:^{@\mathrm{JS}@} \\ $$$$\mathrm{let}\:\left(\sqrt{\mathrm{x}}\:,\mathrm{x}\right)\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{y}=\mathrm{x}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{closest}\:\mathrm{to}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{18}\right) \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have}\:\mathrm{d}\:=\:\sqrt{\left(\sqrt{\mathrm{x}}−\mathrm{0}\right)^{\mathrm{2}} +\left(\mathrm{x}−\mathrm{18}\right)^{\mathrm{2}} } \\ $$$$\mathrm{d}\:=\:\sqrt{\mathrm{x}+\mathrm{x}^{\mathrm{2}} −\mathrm{36x}+\mathrm{324}}\: \\ $$$$\mathrm{d}\:=\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{35x}+\mathrm{324}} \\ $$$$\mathrm{put}\:\mathrm{d}'\:=\:\mathrm{0}\:\Rightarrow\mathrm{d}'=\frac{\mathrm{2x}−\mathrm{35}}{\mathrm{2}\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{35x}+\mathrm{324}}}=\mathrm{0} \\ $$$$\rightarrow\mathrm{so}\:\mathrm{the}\:\mathrm{coordinates}\:\mathrm{point}\:\mathrm{we} \\ $$$$\mathrm{search}\:\mathrm{is}\:\left(\pm\sqrt{\frac{\mathrm{35}}{\mathrm{2}}}\:,\:\frac{\mathrm{35}}{\mathrm{2}}\right)\:.\: \\ $$

Answered by bobhans last updated on 07/Aug/20

      ^(≻bobhans≺)   find tangent to y=x^2  at (x_o ,y_o ) is y=2x_o (x−x_o )+y_o   find normal to y=x^2  at (x_o ,y_o ) is   y=−(1/(2x_o ))(x−x_o )+y_o  passes through (0,18)  18 = −(1/(2x_o ))(−x_o )+y_o ⇒y_o =18−(1/2)=((35)/2)  so we get x_o = ±(√y_o ) = ±(√((35)/2))  therefore the point are (±(√((35)/2)), ((35)/2))

$$\:\:\:\:\:\:\:^{\succ\mathrm{bobhans}\prec} \\ $$$$\mathrm{find}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} \:\mathrm{at}\:\left(\mathrm{x}_{\mathrm{o}} ,\mathrm{y}_{\mathrm{o}} \right)\:\mathrm{is}\:\mathrm{y}=\mathrm{2x}_{\mathrm{o}} \left(\mathrm{x}−\mathrm{x}_{\mathrm{o}} \right)+\mathrm{y}_{\mathrm{o}} \\ $$$$\mathrm{find}\:\mathrm{normal}\:\mathrm{to}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} \:\mathrm{at}\:\left(\mathrm{x}_{\mathrm{o}} ,\mathrm{y}_{\mathrm{o}} \right)\:\mathrm{is}\: \\ $$$$\mathrm{y}=−\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{o}} }\left(\mathrm{x}−\mathrm{x}_{\mathrm{o}} \right)+\mathrm{y}_{\mathrm{o}} \:\mathrm{passes}\:\mathrm{through}\:\left(\mathrm{0},\mathrm{18}\right) \\ $$$$\mathrm{18}\:=\:−\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{o}} }\left(−\mathrm{x}_{\mathrm{o}} \right)+\mathrm{y}_{\mathrm{o}} \Rightarrow\mathrm{y}_{\mathrm{o}} =\mathrm{18}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{35}}{\mathrm{2}} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{get}\:\mathrm{x}_{\mathrm{o}} =\:\pm\sqrt{\mathrm{y}_{\mathrm{o}} }\:=\:\pm\sqrt{\frac{\mathrm{35}}{\mathrm{2}}} \\ $$$$\mathrm{therefore}\:\mathrm{the}\:\mathrm{point}\:\mathrm{are}\:\left(\pm\sqrt{\frac{\mathrm{35}}{\mathrm{2}}},\:\frac{\mathrm{35}}{\mathrm{2}}\right)\: \\ $$

Answered by 1549442205PVT last updated on 07/Aug/20

  Let A (x,x^2 )be any point lying on  the curve y=x^2 .Then  MA=(√((x−0)^2 +(x^2 −18)^2 ))  =(√(x^4 −35x^2 +324))=(√((x^2 −((35)/2))^2 +((71)/4)))  ≥(√((71)/4))=((√(71))/2).  The equality ocurrs when x^2 =((35)/2)  ⇔x=±(√((35)/2))=±((√(70))/2)⇒y=x^2 =((35)/2)  Thus,the point lying on the curve  y=x^2  which is nearest point to the  point (0;18) is the point A(±((√(70))/2);((35)/2))  and that shortest  distance equal to  ((√(71))/2)

$$ \\ $$$$\mathrm{Let}\:\mathrm{A}\:\left(\mathrm{x},\mathrm{x}^{\mathrm{2}} \right)\mathrm{be}\:\mathrm{any}\:\mathrm{point}\:\mathrm{lying}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{curve}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} .\mathrm{Then} \\ $$$$\mathrm{MA}=\sqrt{\left(\mathrm{x}−\mathrm{0}\right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} −\mathrm{18}\right)^{\mathrm{2}} } \\ $$$$=\sqrt{\mathrm{x}^{\mathrm{4}} −\mathrm{35x}^{\mathrm{2}} +\mathrm{324}}=\sqrt{\left(\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{35}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{71}}{\mathrm{4}}} \\ $$$$\geqslant\sqrt{\frac{\mathrm{71}}{\mathrm{4}}}=\frac{\sqrt{\mathrm{71}}}{\mathrm{2}}. \\ $$$$\mathrm{The}\:\mathrm{equality}\:\mathrm{ocurrs}\:\mathrm{when}\:\mathrm{x}^{\mathrm{2}} =\frac{\mathrm{35}}{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{x}=\pm\sqrt{\frac{\mathrm{35}}{\mathrm{2}}}=\pm\frac{\sqrt{\mathrm{70}}}{\mathrm{2}}\Rightarrow\mathrm{y}=\mathrm{x}^{\mathrm{2}} =\frac{\mathrm{35}}{\mathrm{2}} \\ $$$$\mathrm{Thus},\mathrm{the}\:\mathrm{point}\:\mathrm{lying}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{y}=\mathrm{x}^{\mathrm{2}} \:\mathrm{which}\:\mathrm{is}\:\mathrm{nearest}\:\mathrm{point}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{point}\:\left(\mathrm{0};\mathrm{18}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{point}\:\mathrm{A}\left(\pm\frac{\sqrt{\mathrm{70}}}{\mathrm{2}};\frac{\mathrm{35}}{\mathrm{2}}\right) \\ $$$$\mathrm{and}\:\mathrm{that}\:\mathrm{shortest}\:\:\mathrm{distance}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\frac{\sqrt{\mathrm{71}}}{\mathrm{2}} \\ $$

Commented by bemath last updated on 07/Aug/20

typo it should be A(±((√(70))/2), ((35)/2))

$$\mathrm{typo}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{A}\left(\pm\frac{\sqrt{\mathrm{70}}}{\mathrm{2}},\:\frac{\mathrm{35}}{\mathrm{2}}\right) \\ $$

Commented by 1549442205PVT last updated on 07/Aug/20

Thank you sir.I corrected

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}.\mathrm{I}\:\mathrm{corrected} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com