Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 107279 by mathdave last updated on 09/Aug/20

Commented by Dwaipayan Shikari last updated on 10/Aug/20

As x→0  tanx→x  lim_(x→0) ((x^x^x^x^x^x^      /x^x^x^x^x^x^(??)      ))=1

$$\mathrm{As}\:\mathrm{x}\rightarrow\mathrm{0} \\ $$$$\mathrm{tanx}\rightarrow\mathrm{x} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{} } } } } } }{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{??} } } } } } }\right)=\mathrm{1} \\ $$

Answered by 1549442205PVT last updated on 10/Aug/20

We insert the symbol for convenient  I_n =lim_(n→∞) (lim_(x→0) ((((tanx)^( (tanx)^(  (tanx)...) ) ^(↽^(n times) ) )/x^x^(x...)  _⌣_(n times)  )))  =lim_(x→0) ((f_n (x))/(g_n (x)))  =where f_k (x)=(tanx)^( (tanx)^(   (tan x)...) )  ^(↽^(k times) )   g_k (x)=x^x^(x....)    ^(↽^(k times) )   We prove that I_n =1 for ∀n∈N,n≥1  Indeed,for n=1 we have  I_1 =lim_(x→0) ((tanx)/x)=lim_(x→0) ((sinx)/x).(1/(cosx))=1.(1/1)=1  I_2 =lim_(x→0) ((tanx^(tanx) )/x^x )⇒lnI_2 =lim_(x→0) (ln((tanx^(tanx) )/x^x ))  =lim_(x→0) (tanxln(tanx)−xln(x))  We have lim_(x→0) (tanxln(tanx))=  J=lim_(x→0) ((lntanx)/(1/(tanx))).This is the form (∞/∞).Hence  apply L′Hopital we get  J=(((1+tan^2 x)/(tanx))/(−(1/(tan^2 x))(1+tan^2 x)))=lim_(x→0) (−tanx)=0  K=lim_(x→0) (xlnx)=lim_(x→0) (((lnx)/(1/x)))=lim_(x→0) ((1/x)/((−1)/x^2 ))  =lim_(x→0) (−x)=0  Thus,lnI_2 =0⇒I_2 =e^0 =1.We see that  the assertion is true for n=1,2.Now  suppose that assertion was true for  ∀n=1,2,....,k.We need to prove that  it is also for n=k+1.Indeed,we  conside I_(k+1) =(lim_(x→0) ((((tanx)^( (tanx)^(  (tanx)...) ) ^(↽^((k+1) times) ) )/x^x^(x...)  _⌣_((k+1) times)  )))  Then  lnI_(k+1) =lim(((tanxlnf_k (x))/(xlng_k (x))))  ⇒lnI_(k+1) =lim_(x→0) [ln(f_k (x)^(tanx) )−ln(g_k (x)^x ]  +for k=1 by above proof was true   +Suppose it is true ∀n=1,2,...,k  which means I_k = lim_(x→0) ( ln((f_k (x))/(g_k (x))))=0 ∀k=1,2,...,k  Then lnI_(k+1) =lim[ln(((f_k (x)^(tanx) )/(g_k (x)^x )))]  =lim[tanxln(f_k (x))−xln(g_k (x))]  =lim_(x→0) {tanx[ln(f_k (x))−ln(g_k (x))]+  tanxln(g_k (x))}=0 since   [ln(f_k (x))−ln(g_k (x))]=0 by  introduction the hypothesis and   ln(xg_k (x))→0 when x→0.Indeed,this can   is prove by induction follows as:  +for k=1 we have lim_(x→0)  [xlng_1 (x)]=  =lim_(x→0) (xlnx)=lim_(x→0) ((lnx)/(1/x))=lim_(x→0) ((1/x)/((−1)/x^2 ))=lim_(x→0) (−x)=0  +Suppose it is true ∀n=1,2,...,k  +Then lim_(x→0) [ln(g_(k+1) (x))]=lim[_(x→0) xln(g_k (x))]  =0.0 due to lim[ln(g_k (x))]=0 (by   introduction the hypothesis).This  show that lim_(x→0) [xln(g_k (x))]=0 true ∀n≥1  Thus ,we  prove that ln I_(k+1) =0 is true  ,so by introduction primciple lnI_n =0  is true ∀n≥1.⇒I_n =e^0 =1∀n∈N,n≥1  (q.e.d)

$$\mathrm{We}\:\mathrm{insert}\:\mathrm{the}\:\mathrm{symbol}\:\mathrm{for}\:\mathrm{convenient} \\ $$$$\mathrm{I}_{\mathrm{n}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\overset{\overset{\mathrm{n}\:\mathrm{times}} {\leftharpoondown}} {\left(\mathrm{tanx}\right)^{\:\left(\mathrm{tanx}\right)^{\:\:\left(\mathrm{tanx}\right)...} } }}{\underset{\underset{\mathrm{n}\:\mathrm{times}} {\smile}} {\mathrm{x}}^{\mathrm{x}^{\mathrm{x}...} } }\right)\right) \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)}{\mathrm{g}_{\mathrm{n}} \left(\mathrm{x}\right)} \\ $$$$=\mathrm{where}\:\mathrm{f}_{\mathrm{k}} \left(\mathrm{x}\right)=\overset{\overset{\mathrm{k}\:\mathrm{times}} {\leftharpoondown}} {\left(\mathrm{tanx}\right)^{\:\left(\mathrm{tanx}\right)^{\:\:\:\left(\mathrm{tan}\:\mathrm{x}\right)...} } \:} \\ $$$$\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)=\overset{\overset{\mathrm{k}\:\mathrm{times}} {\leftharpoondown}} {\mathrm{x}^{\mathrm{x}^{\mathrm{x}....} } \:\:} \\ $$$$\mathrm{We}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{I}_{\mathrm{n}} =\mathrm{1}\:\mathrm{for}\:\forall\mathrm{n}\in\mathbb{N},\mathrm{n}\geqslant\mathrm{1} \\ $$$$\mathrm{Indeed},\mathrm{for}\:\mathrm{n}=\mathrm{1}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{I}_{\mathrm{1}} =\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tanx}}{\mathrm{x}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sinx}}{\mathrm{x}}.\frac{\mathrm{1}}{\mathrm{cosx}}=\mathrm{1}.\frac{\mathrm{1}}{\mathrm{1}}=\mathrm{1} \\ $$$$\mathrm{I}_{\mathrm{2}} =\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tanx}^{\mathrm{tanx}} }{\mathrm{x}^{\mathrm{x}} }\Rightarrow\mathrm{lnI}_{\mathrm{2}} =\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{ln}\frac{\mathrm{tanx}^{\mathrm{tanx}} }{\mathrm{x}^{\mathrm{x}} }\right) \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{tanxln}\left(\mathrm{tanx}\right)−\mathrm{xln}\left(\mathrm{x}\right)\right) \\ $$$$\mathrm{We}\:\mathrm{have}\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{tanxln}\left(\mathrm{tanx}\right)\right)= \\ $$$$\mathrm{J}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{lntanx}}{\frac{\mathrm{1}}{\mathrm{tanx}}}.\mathrm{This}\:\mathrm{is}\:\mathrm{the}\:\mathrm{form}\:\frac{\infty}{\infty}.\mathrm{Hence} \\ $$$$\mathrm{apply}\:\mathrm{L}'\mathrm{Hopital}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{J}=\frac{\frac{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}}{\mathrm{tanx}}}{−\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \mathrm{x}}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}\right)}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\mathrm{tanx}\right)=\mathrm{0} \\ $$$$\mathrm{K}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{xlnx}\right)=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{lnx}}{\frac{\mathrm{1}}{\mathrm{x}}}\right)=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{\mathrm{x}}}{\frac{−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\mathrm{x}\right)=\mathrm{0} \\ $$$$\mathrm{Thus},\mathrm{lnI}_{\mathrm{2}} =\mathrm{0}\Rightarrow\mathrm{I}_{\mathrm{2}} =\mathrm{e}^{\mathrm{0}} =\mathrm{1}.\mathrm{We}\:\mathrm{see}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{assertion}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{n}=\mathrm{1},\mathrm{2}.\mathrm{Now} \\ $$$$\mathrm{suppose}\:\mathrm{that}\:\mathrm{assertion}\:\mathrm{was}\:\mathrm{true}\:\mathrm{for} \\ $$$$\forall\mathrm{n}=\mathrm{1},\mathrm{2},....,\mathrm{k}.\mathrm{We}\:\mathrm{need}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{also}\:\mathrm{for}\:\mathrm{n}=\mathrm{k}+\mathrm{1}.\mathrm{Indeed},\mathrm{we} \\ $$$$\mathrm{conside}\:\mathrm{I}_{\mathrm{k}+\mathrm{1}} =\left(\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\overset{\overset{\left(\mathrm{k}+\mathrm{1}\right)\:\mathrm{times}} {\leftharpoondown}} {\left(\mathrm{tanx}\right)^{\:\left(\mathrm{tanx}\right)^{\:\:\left(\mathrm{tanx}\right)...} } }}{\underset{\underset{\left(\boldsymbol{\mathrm{k}}+\mathrm{1}\right)\:\mathrm{times}} {\smile}} {\mathrm{x}}^{\mathrm{x}^{\mathrm{x}...} } }\right)\right) \\ $$$$\mathrm{Then} \\ $$$$\mathrm{lnI}_{\mathrm{k}+\mathrm{1}} =\mathrm{lim}\left(\frac{\mathrm{tanxlnf}_{\mathrm{k}} \left(\mathrm{x}\right)}{\mathrm{xlng}_{\mathrm{k}} \left(\mathrm{x}\right)}\right) \\ $$$$\Rightarrow\mathrm{lnI}_{\mathrm{k}+\mathrm{1}} =\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{ln}\left(\mathrm{f}_{\mathrm{k}} \left(\mathrm{x}\right)^{\mathrm{tanx}} \right)−\mathrm{ln}\left(\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)^{\mathrm{x}} \right]\right. \\ $$$$+\mathrm{for}\:\mathrm{k}=\mathrm{1}\:\mathrm{by}\:\mathrm{above}\:\mathrm{proof}\:\mathrm{was}\:\mathrm{true}\: \\ $$$$+\mathrm{Suppose}\:\mathrm{it}\:\mathrm{is}\:\mathrm{true}\:\forall\mathrm{n}=\mathrm{1},\mathrm{2},...,\mathrm{k} \\ $$$$\mathrm{which}\:\mathrm{means}\:\mathrm{I}_{\mathrm{k}} =\underset{\mathrm{x}\rightarrow\mathrm{0}} {\:\mathrm{lim}}\left(\:\mathrm{ln}\frac{\mathrm{f}_{\mathrm{k}} \left(\mathrm{x}\right)}{\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)}\right)=\mathrm{0}\:\forall\mathrm{k}=\mathrm{1},\mathrm{2},...,\mathrm{k} \\ $$$$\mathrm{Then}\:\mathrm{lnI}_{\mathrm{k}+\mathrm{1}} =\mathrm{lim}\left[\mathrm{ln}\left(\frac{\mathrm{f}_{\mathrm{k}} \left(\mathrm{x}\right)^{\mathrm{tanx}} }{\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)^{\mathrm{x}} }\right)\right] \\ $$$$=\mathrm{lim}\left[\mathrm{tanxln}\left(\mathrm{f}_{\mathrm{k}} \left(\mathrm{x}\right)\right)−\mathrm{xln}\left(\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)\right)\right] \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\mathrm{tanx}\left[\mathrm{ln}\left(\mathrm{f}_{\mathrm{k}} \left(\mathrm{x}\right)\right)−\mathrm{ln}\left(\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)\right)\right]+\right. \\ $$$$\left.\mathrm{tanxln}\left(\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)\right)\right\}=\mathrm{0}\:\mathrm{since}\: \\ $$$$\left[\mathrm{ln}\left(\mathrm{f}_{\mathrm{k}} \left(\mathrm{x}\right)\right)−\mathrm{ln}\left(\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)\right)\right]=\mathrm{0}\:\mathrm{by} \\ $$$$\mathrm{introduction}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{and}\: \\ $$$$\mathrm{ln}\left(\mathrm{xg}_{\mathrm{k}} \left(\mathrm{x}\right)\right)\rightarrow\mathrm{0}\:\mathrm{when}\:\mathrm{x}\rightarrow\mathrm{0}.\mathrm{Indeed},\mathrm{this}\:\mathrm{can}\: \\ $$$$\mathrm{is}\:\mathrm{prove}\:\mathrm{by}\:\mathrm{induction}\:\mathrm{follows}\:\mathrm{as}: \\ $$$$+\mathrm{for}\:\mathrm{k}=\mathrm{1}\:\mathrm{we}\:\mathrm{have}\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\mathrm{xlng}_{\mathrm{1}} \left(\mathrm{x}\right)\right]= \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{xlnx}\right)=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{lnx}}{\frac{\mathrm{1}}{\mathrm{x}}}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{\mathrm{x}}}{\frac{−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(−\mathrm{x}\right)=\mathrm{0} \\ $$$$+\mathrm{Suppose}\:\mathrm{it}\:\mathrm{is}\:\mathrm{true}\:\forall\mathrm{n}=\mathrm{1},\mathrm{2},...,\mathrm{k} \\ $$$$+\mathrm{Then}\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{ln}\left(\mathrm{g}_{\mathrm{k}+\mathrm{1}} \left(\mathrm{x}\right)\right)\right]=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}\left[}\mathrm{xln}\left(\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)\right)\right] \\ $$$$=\mathrm{0}.\mathrm{0}\:\mathrm{due}\:\mathrm{to}\:\mathrm{lim}\left[\mathrm{ln}\left(\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)\right)\right]=\mathrm{0}\:\left(\mathrm{by}\:\right. \\ $$$$\left.\mathrm{introduction}\:\mathrm{the}\:\mathrm{hypothesis}\right).\mathrm{This} \\ $$$$\mathrm{show}\:\mathrm{that}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\:\mathrm{lim}}\left[\mathrm{xln}\left(\mathrm{g}_{\mathrm{k}} \left(\mathrm{x}\right)\right)\right]=\mathrm{0}\:\mathrm{true}\:\forall\mathrm{n}\geqslant\mathrm{1} \\ $$$$\mathrm{Thus}\:,\mathrm{we}\:\:\mathrm{prove}\:\mathrm{that}\:\mathrm{ln}\:\mathrm{I}_{\mathrm{k}+\mathrm{1}} =\mathrm{0}\:\mathrm{is}\:\mathrm{true} \\ $$$$,\mathrm{so}\:\mathrm{by}\:\mathrm{introduction}\:\mathrm{primciple}\:\mathrm{lnI}_{\mathrm{n}} =\mathrm{0} \\ $$$$\mathrm{is}\:\mathrm{true}\:\forall\mathrm{n}\geqslant\mathrm{1}.\Rightarrow\mathrm{I}_{\mathrm{n}} =\mathrm{e}^{\mathrm{0}} =\mathrm{1}\forall\mathrm{n}\in\mathbb{N},\mathrm{n}\geqslant\mathrm{1} \\ $$$$\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com