Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 107745 by ajfour last updated on 12/Aug/20

(i)   L=lim_(x→0) [(((1+x)^(1/x) )/e)]^(1/x)   = ?  (ii)  L=lim_(x→∞) [(x/e)−x((x/(x+1)))^x ] = ?

$$\left({i}\right)\:\:\:{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{1}/{x}} }{{e}}\right]^{\mathrm{1}/{x}} \:\:=\:? \\ $$$$\left({ii}\right)\:\:{L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[\frac{{x}}{{e}}−{x}\left(\frac{{x}}{{x}+\mathrm{1}}\right)^{{x}} \right]\:=\:? \\ $$

Commented by ajfour last updated on 12/Aug/20

MJS Sir, please help..

$${MJS}\:{Sir},\:{please}\:{help}.. \\ $$

Commented by bemath last updated on 13/Aug/20

Commented by bobhans last updated on 13/Aug/20

wow..==great and nice

$$\mathrm{wow}..==\mathrm{great}\:\mathrm{and}\:\mathrm{nice} \\ $$

Answered by Dwaipayan Shikari last updated on 13/Aug/20

lim_(x→0) ((((1+x)^(1/x) )/e))^(1/x) =L  (1/x)log(1+x)^(1/x) −(1/x)loge=logL  ((log(1+x))/x^2 )−(1/x)=logL  ((log(1+x^2 )−x)/x^2 )=logL  (((1/(1+x))−1)/(2x))=logL  (((−1)/((1+x)^2 ))/2)=logL  −(1/2)=logL  L=(1/( (√e)))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} }{{e}}\right)^{\frac{\mathrm{1}}{{x}}} ={L} \\ $$$$\frac{\mathrm{1}}{{x}}{log}\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} −\frac{\mathrm{1}}{{x}}{loge}={logL} \\ $$$$\frac{{log}\left(\mathrm{1}+{x}\right)}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{{x}}={logL} \\ $$$$\frac{{log}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−{x}}{{x}^{\mathrm{2}} }={logL} \\ $$$$\frac{\frac{\mathrm{1}}{\mathrm{1}+{x}}−\mathrm{1}}{\mathrm{2}{x}}={logL} \\ $$$$\frac{\frac{−\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }}{\mathrm{2}}={logL} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}={logL} \\ $$$${L}=\frac{\mathrm{1}}{\:\sqrt{{e}}} \\ $$

Commented by ajfour last updated on 12/Aug/20

Great!   thanks a lot.

$${Great}!\:\:\:{thanks}\:{a}\:{lot}. \\ $$

Commented by Dwaipayan Shikari last updated on 12/Aug/20

Another way  ((log(1+x))/x^2 )−1=(1−(1/2)+(x/3)−....)−1=−(1/2)  L=e^((−1)/2) =(1/( (√e)))

$${Another}\:{way} \\ $$$$\frac{{log}\left(\mathrm{1}+{x}\right)}{{x}^{\mathrm{2}} }−\mathrm{1}=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{{x}}{\mathrm{3}}−....\right)−\mathrm{1}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${L}={e}^{\frac{−\mathrm{1}}{\mathrm{2}}} =\frac{\mathrm{1}}{\:\sqrt{{e}}} \\ $$

Commented by bemath last updated on 13/Aug/20

how do you get (1/x)log (1+x)^(1/x) −(1/x)log e^x   it wrong=  the original limit   lim_(x→0) ((((1+x)^(1/x) )/e))^(1/x)  not   lim_(x→0) ((((1+x)^(1/x) )/e^x ))^(1/x) .

$${how}\:{do}\:{you}\:{get}\:\frac{\mathrm{1}}{{x}}\mathrm{log}\:\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} −\frac{\mathrm{1}}{{x}}\mathrm{log}\:{e}^{{x}} \\ $$$${it}\:{wrong}= \\ $$$${the}\:{original}\:{limit}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} }{{e}}\right)^{\frac{\mathrm{1}}{{x}}} \:{not}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} }{{e}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} . \\ $$

Answered by mathmax by abdo last updated on 12/Aug/20

f(x) ={(((1+x)^(1/x) )/e)}^(1/x)  ⇒f(x) =(((1+x)^(1/x^2 ) )/e^(1/x) ) =e^(−(1/x)) (1+x)^(1/x^2 )   =e^(−(1/x))  .e^((1/x^2 )ln(1+x))    we have ln^′ (1+x) =(1/(1+x)) =1−x +o(x) ⇒  ln(1+x) =x−(x^2 /2) +o(x^2 ) ⇒(1/x^2 )ln(1+x) =(1/x)−(1/2) +o(1) ⇒  f(x) =e^(−(1/x)+(1/x)−(1/2)+o(1))  =e^(−(1/2)+o(1))  ⇒lim_(x→0) f(x) =(1/(√e))

$$\mathrm{f}\left(\mathrm{x}\right)\:=\left\{\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} }{\mathrm{e}}\right\}^{\frac{\mathrm{1}}{\mathrm{x}}} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} }{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}}} }\:=\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}}} \left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \\ $$$$=\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}}} \:.\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)} \:\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{ln}^{'} \left(\mathrm{1}+\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}}\:=\mathrm{1}−\mathrm{x}\:+\mathrm{o}\left(\mathrm{x}\right)\:\Rightarrow \\ $$$$\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\:=\mathrm{x}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:+\mathrm{o}\left(\mathrm{x}^{\mathrm{2}} \right)\:\Rightarrow\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{2}}\:+\mathrm{o}\left(\mathrm{1}\right)\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{o}\left(\mathrm{1}\right)} \:=\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{o}\left(\mathrm{1}\right)} \:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\sqrt{\mathrm{e}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com