Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 108473 by subhankar10 last updated on 17/Aug/20

3x^3 +4x−3=0  solve this problem.

$$\mathrm{3x}^{\mathrm{3}} +\mathrm{4x}−\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{solve}\:\mathrm{this}\:\mathrm{problem}. \\ $$

Answered by Sarah85 last updated on 17/Aug/20

x^3 +(4/3)x−1=0  p=(4/3)∧q=−1 ⇒ D=((p/3))^3 +((q/2))^2 >0 ⇒ Cardano  u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) ∧v=−(((q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3)   x_1 =u+v  x_2 =ωu+ω^2 v  x_3 =ω^2 u+ωv  where ω=−(1/2)+((√3)/2)i  now put p=(4/3)∧q=−1

$${x}^{\mathrm{3}} +\frac{\mathrm{4}}{\mathrm{3}}{x}−\mathrm{1}=\mathrm{0} \\ $$$${p}=\frac{\mathrm{4}}{\mathrm{3}}\wedge{q}=−\mathrm{1}\:\Rightarrow\:{D}=\left(\frac{{p}}{\mathrm{3}}\right)^{\mathrm{3}} +\left(\frac{{q}}{\mathrm{2}}\right)^{\mathrm{2}} >\mathrm{0}\:\Rightarrow\:\mathrm{Cardano} \\ $$$${u}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}}\wedge{v}=−\sqrt[{\mathrm{3}}]{\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}} \\ $$$${x}_{\mathrm{1}} ={u}+{v} \\ $$$${x}_{\mathrm{2}} =\omega{u}+\omega^{\mathrm{2}} {v} \\ $$$${x}_{\mathrm{3}} =\omega^{\mathrm{2}} {u}+\omega{v} \\ $$$$\mathrm{where}\:\omega=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{now}\:\mathrm{put}\:{p}=\frac{\mathrm{4}}{\mathrm{3}}\wedge{q}=−\mathrm{1} \\ $$

Answered by 1549442205PVT last updated on 17/Aug/20

3x^3 +4x−3=0(1)  Put x=(2/3)y then (1)⇔(8/9)y^3 +(8/3)y−3=0  ⇔y^3 +3y−((27)/8)=0 (2).Put y=z−(1/z)  (2)⇔z^3 −(1/z^3 )−3(z−(1/z))+3(z−(1/z))−((27)/8)=0  ⇔z^3 −(1/z^3 )−((27)/8)=0.Put z^3 =t we get  t−(1/t)−((27)/8)=0⇔8t^2 −27t−8=0  Δ=27^2 +4.8^2 =729+256=985  ⇒z^3 =t=((27±(√(985)))/(16))⇒z=^3 (√((27±(√(985)))/(16)))  ⇒(1/z)=^3 (√((16)/(27±(√(985)))))  i)For z=^3 (√((27+(√(985)))/(16)))⇒(1/z)=^3 (√((16)/(27+(√(985)))))  we get  x_1 =(2/3)y=(2/3)(z−(1/z))=  =(2/3)[^3 (√((27+(√(985)))/(16)))−^3 (√((16)/(27+(√(985)))))]  ii)For z=^3 (√((27−(√(985)))/(16)))⇒(1/z)=^3 (√((16)/(27−(√(985)))))  z−(1/z)= [3(√((27−(√(985)))/(16)))−^3 (√((16)/(27−(√(985)))))]  =[^3 (√((−256)/(16(27+(√(985)))))−^3 (√((16(27+(√(985))))/(−256)))  =^3 (√((−16)/(27+(√(985)))))−^3 (√((27+(√(985)))/(−16)))  =^3 (√((27+(√(985)))/(16)))−^3 (√((16)/(27+(√(985)))))  we get x_2 =(2/3)y=(2/3)(z−(1/z))=x_1   Thus,the given equation has unique  solution x=(2/3)[3(√((27+(√(985)))/(16)))−^3 (√((16)/(27+(√(985)))))]

$$\mathrm{3x}^{\mathrm{3}} +\mathrm{4x}−\mathrm{3}=\mathrm{0}\left(\mathrm{1}\right) \\ $$$$\mathrm{Put}\:\mathrm{x}=\frac{\mathrm{2}}{\mathrm{3}}\mathrm{y}\:\mathrm{then}\:\left(\mathrm{1}\right)\Leftrightarrow\frac{\mathrm{8}}{\mathrm{9}}\mathrm{y}^{\mathrm{3}} +\frac{\mathrm{8}}{\mathrm{3}}\mathrm{y}−\mathrm{3}=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{y}^{\mathrm{3}} +\mathrm{3y}−\frac{\mathrm{27}}{\mathrm{8}}=\mathrm{0}\:\left(\mathrm{2}\right).\mathrm{Put}\:\mathrm{y}=\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}} \\ $$$$\left(\mathrm{2}\right)\Leftrightarrow\mathrm{z}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{3}} }−\mathrm{3}\left(\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}}\right)+\mathrm{3}\left(\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}}\right)−\frac{\mathrm{27}}{\mathrm{8}}=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{z}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{3}} }−\frac{\mathrm{27}}{\mathrm{8}}=\mathrm{0}.\mathrm{Put}\:\mathrm{z}^{\mathrm{3}} =\mathrm{t}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{t}−\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{27}}{\mathrm{8}}=\mathrm{0}\Leftrightarrow\mathrm{8t}^{\mathrm{2}} −\mathrm{27t}−\mathrm{8}=\mathrm{0} \\ $$$$\Delta=\mathrm{27}^{\mathrm{2}} +\mathrm{4}.\mathrm{8}^{\mathrm{2}} =\mathrm{729}+\mathrm{256}=\mathrm{985} \\ $$$$\Rightarrow\mathrm{z}^{\mathrm{3}} =\mathrm{t}=\frac{\mathrm{27}\pm\sqrt{\mathrm{985}}}{\mathrm{16}}\Rightarrow\mathrm{z}=\:^{\mathrm{3}} \sqrt{\frac{\mathrm{27}\pm\sqrt{\mathrm{985}}}{\mathrm{16}}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{z}}=\:^{\mathrm{3}} \sqrt{\frac{\mathrm{16}}{\mathrm{27}\pm\sqrt{\mathrm{985}}}} \\ $$$$\left.\mathrm{i}\right)\mathrm{For}\:\mathrm{z}=\:^{\mathrm{3}} \sqrt{\frac{\mathrm{27}+\sqrt{\mathrm{985}}}{\mathrm{16}}}\Rightarrow\frac{\mathrm{1}}{\mathrm{z}}=\:^{\mathrm{3}} \sqrt{\frac{\mathrm{16}}{\mathrm{27}+\sqrt{\mathrm{985}}}} \\ $$$$\mathrm{we}\:\mathrm{get}\:\:\mathrm{x}_{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}}\mathrm{y}=\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}}\right)= \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left[\:^{\mathrm{3}} \sqrt{\frac{\mathrm{27}+\sqrt{\mathrm{985}}}{\mathrm{16}}}−\:^{\mathrm{3}} \sqrt{\frac{\mathrm{16}}{\mathrm{27}+\sqrt{\mathrm{985}}}}\right] \\ $$$$\left.\mathrm{ii}\right)\mathrm{For}\:\mathrm{z}=\:^{\mathrm{3}} \sqrt{\frac{\mathrm{27}−\sqrt{\mathrm{985}}}{\mathrm{16}}}\Rightarrow\frac{\mathrm{1}}{\mathrm{z}}=\:^{\mathrm{3}} \sqrt{\frac{\mathrm{16}}{\mathrm{27}−\sqrt{\mathrm{985}}}} \\ $$$$\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}}=\:\left[\mathrm{3}\sqrt{\frac{\mathrm{27}−\sqrt{\mathrm{985}}}{\mathrm{16}}}−\:^{\mathrm{3}} \sqrt{\frac{\mathrm{16}}{\mathrm{27}−\sqrt{\mathrm{985}}}}\right] \\ $$$$=\left[\:^{\mathrm{3}} \sqrt{\frac{−\mathrm{256}}{\mathrm{16}\left(\mathrm{27}+\sqrt{\mathrm{985}}\right.}}−\:^{\mathrm{3}} \sqrt{\frac{\mathrm{16}\left(\mathrm{27}+\sqrt{\mathrm{985}}\right)}{−\mathrm{256}}}\right. \\ $$$$=\:^{\mathrm{3}} \sqrt{\frac{−\mathrm{16}}{\mathrm{27}+\sqrt{\mathrm{985}}}}−\:^{\mathrm{3}} \sqrt{\frac{\mathrm{27}+\sqrt{\mathrm{985}}}{−\mathrm{16}}} \\ $$$$=^{\mathrm{3}} \sqrt{\frac{\mathrm{27}+\sqrt{\mathrm{985}}}{\mathrm{16}}}−\:^{\mathrm{3}} \sqrt{\frac{\mathrm{16}}{\mathrm{27}+\sqrt{\mathrm{985}}}} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{x}_{\mathrm{2}} =\frac{\mathrm{2}}{\mathrm{3}}\mathrm{y}=\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{z}−\frac{\mathrm{1}}{\mathrm{z}}\right)=\mathrm{x}_{\mathrm{1}} \\ $$$$\mathrm{Thus},\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{has}\:\mathrm{unique} \\ $$$$\mathrm{solution}\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{2}}{\mathrm{3}}\left[\mathrm{3}\sqrt{\frac{\mathrm{27}+\sqrt{\mathrm{985}}}{\mathrm{16}}}−\:^{\mathrm{3}} \sqrt{\frac{\mathrm{16}}{\mathrm{27}+\sqrt{\mathrm{985}}}}\right] \\ $$

Commented by Sarah85 last updated on 17/Aug/20

we′ve got Cardano′s solution formula and  for the cases where D<0 there′s a trigonometric  solution formula. no need to solve each single  case like this.  and btw a 3rd degree polynomial always has  three solutions

$$\mathrm{we}'\mathrm{ve}\:\mathrm{got}\:\mathrm{Cardano}'\mathrm{s}\:\mathrm{solution}\:\mathrm{formula}\:\mathrm{and} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{cases}\:\mathrm{where}\:{D}<\mathrm{0}\:\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{trigonometric} \\ $$$$\mathrm{solution}\:\mathrm{formula}.\:\mathrm{no}\:\mathrm{need}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{each}\:\mathrm{single} \\ $$$$\mathrm{case}\:\mathrm{like}\:\mathrm{this}. \\ $$$$\mathrm{and}\:\mathrm{btw}\:\mathrm{a}\:\mathrm{3rd}\:\mathrm{degree}\:\mathrm{polynomial}\:{always}\:\mathrm{has} \\ $$$$\mathrm{three}\:\mathrm{solutions} \\ $$

Commented by 1549442205PVT last updated on 17/Aug/20

The above solution only mention to  real roots.If you want to find two other  complex roots then they are  in the cubic   root of z^3 =((27±(√(985)))/(16)) because the cubic    root of an arbitrary number  has always   three different  values in field of   complex number

$$\mathrm{The}\:\mathrm{above}\:\mathrm{solution}\:\mathrm{only}\:\mathrm{mention}\:\mathrm{to} \\ $$$$\mathrm{real}\:\mathrm{roots}.\mathrm{If}\:\mathrm{you}\:\mathrm{want}\:\mathrm{to}\:\mathrm{find}\:\mathrm{two}\:\mathrm{other} \\ $$$$\mathrm{complex}\:\mathrm{roots}\:\mathrm{then}\:\mathrm{they}\:\mathrm{are}\:\:\mathrm{in}\:\mathrm{the}\:\mathrm{cubic}\: \\ $$$$\mathrm{root}\:\mathrm{of}\:\mathrm{z}^{\mathrm{3}} =\frac{\mathrm{27}\pm\sqrt{\mathrm{985}}}{\mathrm{16}}\:\mathrm{because}\:\mathrm{the}\:\mathrm{cubic}\:\: \\ $$$$\mathrm{root}\:\mathrm{of}\:\mathrm{an}\:\mathrm{arbitrary}\:\mathrm{number}\:\:\mathrm{has}\:\mathrm{always}\: \\ $$$$\mathrm{three}\:\mathrm{different}\:\:\mathrm{values}\:\mathrm{in}\:\mathrm{field}\:\mathrm{of}\: \\ $$$$\mathrm{complex}\:\mathrm{number} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com