Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109337 by ZiYangLee last updated on 22/Aug/20

x=cosθ, where ((3π)/2)<θ<2π, and that 2cosθ−sinθ=2,  show that (√(1−x^2 ))=2(1−x).  Hence or otherwise, find x and deduce that tan2θ=((24)/7)

$${x}=\mathrm{cos}\theta,\:\mathrm{where}\:\frac{\mathrm{3}\pi}{\mathrm{2}}<\theta<\mathrm{2}\pi,\:\mathrm{and}\:\mathrm{that}\:\mathrm{2cos}\theta−\mathrm{sin}\theta=\mathrm{2}, \\ $$ $$\mathrm{show}\:\mathrm{that}\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }=\mathrm{2}\left(\mathrm{1}−{x}\right). \\ $$ $$\mathrm{Hence}\:\mathrm{or}\:\mathrm{otherwise},\:\mathrm{find}\:{x}\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that}\:\mathrm{tan2}\theta=\frac{\mathrm{24}}{\mathrm{7}} \\ $$

Answered by Aziztisffola last updated on 22/Aug/20

(√(1−x^2 ))=(√(1−cos^2 θ))=−sinθ   =2−2cosθ=2(1−cosθ)=2(1−x)   (√(1−x^2 ))=2(1−x) ⇔1−x^2 =4(x^2 −2x+1)   5x^2 −8x+3=0   △=4 ⇒x_1 =1 ∧ x_2 =(3/5)  θ≠2π ⇒x≠1 ⇒x=(3/5)   tan2θ=((2tan(θ))/(1−tan^2 (θ)))   tanθ=((−(4/5))/(3/5))=−(4/3)   tan2θ=((2×((−4)/3))/(1−(((−4)/3))^2 ))=(((−8)/3)/(1−((16)/9)))   =((8×3)/7)=((24)/7)

$$\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }=\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \theta}=−\mathrm{sin}\theta \\ $$ $$\:=\mathrm{2}−\mathrm{2cos}\theta=\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\theta\right)=\mathrm{2}\left(\mathrm{1}−{x}\right) \\ $$ $$\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }=\mathrm{2}\left(\mathrm{1}−{x}\right)\:\Leftrightarrow\mathrm{1}−{x}^{\mathrm{2}} =\mathrm{4}\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\right) \\ $$ $$\:\mathrm{5}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{3}=\mathrm{0} \\ $$ $$\:\bigtriangleup=\mathrm{4}\:\Rightarrow{x}_{\mathrm{1}} =\mathrm{1}\:\wedge\:{x}_{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{5}} \\ $$ $$\theta\neq\mathrm{2}\pi\:\Rightarrow{x}\neq\mathrm{1}\:\Rightarrow{x}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$ $$\:\mathrm{tan2}\theta=\frac{\mathrm{2tan}\left(\theta\right)}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \left(\theta\right)} \\ $$ $$\:\mathrm{tan}\theta=\frac{−\frac{\mathrm{4}}{\mathrm{5}}}{\frac{\mathrm{3}}{\mathrm{5}}}=−\frac{\mathrm{4}}{\mathrm{3}} \\ $$ $$\:\mathrm{tan2}\theta=\frac{\mathrm{2}×\frac{−\mathrm{4}}{\mathrm{3}}}{\mathrm{1}−\left(\frac{−\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{2}} }=\frac{\frac{−\mathrm{8}}{\mathrm{3}}}{\mathrm{1}−\frac{\mathrm{16}}{\mathrm{9}}} \\ $$ $$\:=\frac{\mathrm{8}×\mathrm{3}}{\mathrm{7}}=\frac{\mathrm{24}}{\mathrm{7}} \\ $$

Commented byZiYangLee last updated on 23/Aug/20

NICE!

$$\mathrm{NICE}! \\ $$

Answered by Don08q last updated on 22/Aug/20

 x = cosθ   x^2  = cos^2 θ   1 − x^2  = sin^2 θ   ± (√(1 − x^2 )) = sinθ   But for the interval, ((3π)/2)<θ<2π sine   has a negative value.  ⇒  − (√(1 − x^2 )) = sinθ   so   (√(1 − x^2 )) = −sinθ ............ (1)       But, 2cosθ − sinθ = 2  ⇒      2 − 2x = −sinθ             2(1 − x) = −sinθ ........... (2)   from (1) and (2),           (√(1 − x^2 )) = 2(1 − x)      qed     It follows that        1 − x^2  = 4(1 − 2x + x^2 )        5x^2  − 8x + 3 = 0        x = 1 or x = (3/5)    x cannot be 1, since θ < 2π   ∴  x = (3/5)    tanθ = ((sin θ)/(cos θ))    tanθ = ((−2(1 − x))/x)    tanθ = ((2(x − 1))/x)    tanθ = ((2((3/5) − 1))/(3/5))    tanθ = − (4/3)  But tan 2θ = ((2tan θ)/(1 − tan^2 θ))           tan 2θ = ((2(−(4/3)))/(1 − (−(4/3))^2 ))   ∴    tan 2θ =  ((24)/7)            qed

$$\:{x}\:=\:\mathrm{cos}\theta \\ $$ $$\:{x}^{\mathrm{2}} \:=\:\mathrm{cos}^{\mathrm{2}} \theta \\ $$ $$\:\mathrm{1}\:−\:{x}^{\mathrm{2}} \:=\:\mathrm{sin}^{\mathrm{2}} \theta \\ $$ $$\:\pm\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{2}} }\:=\:\mathrm{sin}\theta\: \\ $$ $${But}\:{for}\:{the}\:{interval},\:\frac{\mathrm{3}\pi}{\mathrm{2}}<\theta<\mathrm{2}\pi\:\mathrm{sine}\: \\ $$ $${has}\:{a}\:{negative}\:{value}. \\ $$ $$\Rightarrow\:\:−\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{2}} }\:=\:\mathrm{sin}\theta \\ $$ $$\:{so}\:\:\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{2}} }\:=\:−\mathrm{sin}\theta\:............\:\left(\mathrm{1}\right) \\ $$ $$\:\:\: \\ $$ $${But},\:\mathrm{2cos}\theta\:−\:\mathrm{sin}\theta\:=\:\mathrm{2} \\ $$ $$\Rightarrow\:\:\:\:\:\:\mathrm{2}\:−\:\mathrm{2}{x}\:=\:−\mathrm{sin}\theta \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\left(\mathrm{1}\:−\:{x}\right)\:=\:−\mathrm{sin}\theta\:...........\:\left(\mathrm{2}\right) \\ $$ $$\:{from}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right),\: \\ $$ $$\:\:\:\:\:\:\:\:\sqrt{\mathrm{1}\:−\:{x}^{\mathrm{2}} }\:=\:\mathrm{2}\left(\mathrm{1}\:−\:{x}\right)\:\:\:\:\:\:{qed} \\ $$ $$ \\ $$ $$\:{It}\:{follows}\:{that} \\ $$ $$\:\:\:\:\:\:\mathrm{1}\:−\:{x}^{\mathrm{2}} \:=\:\mathrm{4}\left(\mathrm{1}\:−\:\mathrm{2}{x}\:+\:{x}^{\mathrm{2}} \right) \\ $$ $$\:\:\:\:\:\:\mathrm{5}{x}^{\mathrm{2}} \:−\:\mathrm{8}{x}\:+\:\mathrm{3}\:=\:\mathrm{0} \\ $$ $$\:\:\:\:\:\:{x}\:=\:\mathrm{1}\:{or}\:{x}\:=\:\frac{\mathrm{3}}{\mathrm{5}} \\ $$ $$\:\:{x}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{1},\:\mathrm{since}\:\theta\:<\:\mathrm{2}\pi \\ $$ $$\:\therefore\:\:{x}\:=\:\frac{\mathrm{3}}{\mathrm{5}} \\ $$ $$\:\:\mathrm{tan}\theta\:=\:\frac{\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta} \\ $$ $$\:\:\mathrm{tan}\theta\:=\:\frac{−\mathrm{2}\left(\mathrm{1}\:−\:{x}\right)}{{x}} \\ $$ $$\:\:\mathrm{tan}\theta\:=\:\frac{\mathrm{2}\left({x}\:−\:\mathrm{1}\right)}{{x}} \\ $$ $$\:\:\mathrm{tan}\theta\:=\:\frac{\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{5}}\:−\:\mathrm{1}\right)}{\frac{\mathrm{3}}{\mathrm{5}}} \\ $$ $$\:\:\mathrm{tan}\theta\:=\:−\:\frac{\mathrm{4}}{\mathrm{3}} \\ $$ $${But}\:\mathrm{tan}\:\mathrm{2}\theta\:=\:\frac{\mathrm{2tan}\:\theta}{\mathrm{1}\:−\:\mathrm{tan}^{\mathrm{2}} \theta} \\ $$ $$\:\:\:\:\:\:\:\:\:\mathrm{tan}\:\mathrm{2}\theta\:=\:\frac{\mathrm{2}\left(−\frac{\mathrm{4}}{\mathrm{3}}\right)}{\mathrm{1}\:−\:\left(−\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$ $$\:\therefore\:\:\:\:\mathrm{tan}\:\mathrm{2}\theta\:=\:\:\frac{\mathrm{24}}{\mathrm{7}}\:\:\:\:\:\:\:\:\:\:\:\:{qed} \\ $$ $$\: \\ $$ $$ \\ $$ $$ \\ $$ $$\:\: \\ $$ $$ \\ $$ $$\:\:\:\:\:\: \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com