Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 109750 by mathdave last updated on 25/Aug/20

Answered by 1549442205PVT last updated on 28/Aug/20

x^6 +27=(x^2 )^3 +3^3 =(x^2 +3)(x^4 −3x^2 +9)  =(x^2 +3)([(x^2 +3)^2 −9x^2 ]  =(x^2 +3)(x^2 +3x+3)(x^2 −3x+3)  (1/(x^6 +27))=((ax+b)/(x^2 +3))+((cx+d)/(x^2 +3x+3))+((ex+f)/(x^2 −3x+3))  ⇔(1/(x^6 +27))=((ax^5 +bx^4 −3ax^3 −3bx^2 +9ax+9b)/(x^6 +27))  +((cx^5 +(d−3c)x^4 +(6c−3d)x^3 +(6d−9c)x^2 +(9c−9d)x+9d)/(x^6 +27))  +((ex^5 +(3e+f)x^4 +(3f+6e)x^3 +(9e+6f)x^2 +(9e+9f)x+9f)/(x^6 +27))  =(((a+c+e)x^5 +(b+d−3c+3e+f)x^4 +(−3a+6c−3d+6e+3f)x^3 +(−3b+9e+6f+6d−9c)x^2 +(9a+9c−9d+9e+9f)x+9b+9d+9f)/(x^6 +27))  ⇔ { ((a+c+e=0)),((b+d−3c=0)),((−3a+6c−3d+6e+3f=0)),((−3b−9c+6d+9e+6f=0)),((9a+9c−9d+9e+9f=0)),((9b+9d+9f=1)) :}  (∗)  We get the matrix of the system of six  linear equations of degree 1 w.r.t six unknown  a,b,c,d,e,f as   [(1,0,1,0,1,0,0),(0,1,(−3),1,3,1,0),((−3),0,6,(−3),6,3,0),(0,(−3),(−9),6,9,6,0),(9,0,9,(−9),9,9,0),(0,9,0,9,0,9,1) ]  Solve above system by using  variable   substitution, algebraic addition (or  equivalent   tranformation for matrixes) we get  a=0,b=(1/(27)),c=(1/(18)),d=(4/(27)),f=((−2)/(27)),e=(1/(54))  (1/(x^6 +27))=(1/(27(x^2 +3)))+((x+2)/(54(x^2 +3x+3)))−((x−2)/(54(x^2 −3x+3)))  Hence  ((324)/(x^3 +27))=((12)/((x^2 +3)))+((6(x+2))/(x^2 +3x+3))−((6(x−2))/(x^2 −3x+3))

$$\mathrm{x}^{\mathrm{6}} +\mathrm{27}=\left(\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} =\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)\left(\mathrm{x}^{\mathrm{4}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{9}\right) \\ $$$$=\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)\left(\left[\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} −\mathrm{9x}^{\mathrm{2}} \right]\right. \\ $$$$=\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}}=\frac{\mathrm{ax}+\mathrm{b}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3}}+\frac{\mathrm{cx}+\mathrm{d}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}}+\frac{\mathrm{ex}+\mathrm{f}}{\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}}=\frac{\mathrm{ax}^{\mathrm{5}} +\mathrm{bx}^{\mathrm{4}} −\mathrm{3ax}^{\mathrm{3}} −\mathrm{3bx}^{\mathrm{2}} +\mathrm{9ax}+\mathrm{9b}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}} \\ $$$$+\frac{\mathrm{cx}^{\mathrm{5}} +\left(\mathrm{d}−\mathrm{3c}\right)\mathrm{x}^{\mathrm{4}} +\left(\mathrm{6c}−\mathrm{3d}\right)\mathrm{x}^{\mathrm{3}} +\left(\mathrm{6d}−\mathrm{9c}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{9c}−\mathrm{9d}\right)\mathrm{x}+\mathrm{9d}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}} \\ $$$$+\frac{\mathrm{ex}^{\mathrm{5}} +\left(\mathrm{3e}+\mathrm{f}\right)\mathrm{x}^{\mathrm{4}} +\left(\mathrm{3f}+\mathrm{6e}\right)\mathrm{x}^{\mathrm{3}} +\left(\mathrm{9e}+\mathrm{6f}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{9e}+\mathrm{9f}\right)\mathrm{x}+\mathrm{9f}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}} \\ $$$$=\frac{\left(\mathrm{a}+\mathrm{c}+\mathrm{e}\right)\mathrm{x}^{\mathrm{5}} +\left(\mathrm{b}+\mathrm{d}−\mathrm{3c}+\mathrm{3e}+\mathrm{f}\right)\mathrm{x}^{\mathrm{4}} +\left(−\mathrm{3a}+\mathrm{6c}−\mathrm{3d}+\mathrm{6e}+\mathrm{3f}\right)\mathrm{x}^{\mathrm{3}} +\left(−\mathrm{3b}+\mathrm{9e}+\mathrm{6f}+\mathrm{6d}−\mathrm{9c}\right)\mathrm{x}^{\mathrm{2}} +\left(\mathrm{9a}+\mathrm{9c}−\mathrm{9d}+\mathrm{9e}+\mathrm{9f}\right)\mathrm{x}+\mathrm{9b}+\mathrm{9d}+\mathrm{9f}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}} \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{a}+\mathrm{c}+\mathrm{e}=\mathrm{0}}\\{\mathrm{b}+\mathrm{d}−\mathrm{3c}=\mathrm{0}}\\{−\mathrm{3a}+\mathrm{6c}−\mathrm{3d}+\mathrm{6e}+\mathrm{3f}=\mathrm{0}}\\{−\mathrm{3b}−\mathrm{9c}+\mathrm{6d}+\mathrm{9e}+\mathrm{6f}=\mathrm{0}}\\{\mathrm{9a}+\mathrm{9c}−\mathrm{9d}+\mathrm{9e}+\mathrm{9f}=\mathrm{0}}\\{\mathrm{9b}+\mathrm{9d}+\mathrm{9f}=\mathrm{1}}\end{cases}\:\:\left(\ast\right) \\ $$$$\mathrm{We}\:\mathrm{get}\:\mathrm{the}\:\mathrm{matrix}\:\mathrm{of}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{six} \\ $$$$\mathrm{linear}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{1}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:\mathrm{six}\:\mathrm{unknown} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e},\mathrm{f}\:\mathrm{as} \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{−\mathrm{3}}&{\mathrm{1}}&{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}\\{−\mathrm{3}}&{\mathrm{0}}&{\mathrm{6}}&{−\mathrm{3}}&{\mathrm{6}}&{\mathrm{3}}&{\mathrm{0}}\\{\mathrm{0}}&{−\mathrm{3}}&{−\mathrm{9}}&{\mathrm{6}}&{\mathrm{9}}&{\mathrm{6}}&{\mathrm{0}}\\{\mathrm{9}}&{\mathrm{0}}&{\mathrm{9}}&{−\mathrm{9}}&{\mathrm{9}}&{\mathrm{9}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{9}}&{\mathrm{0}}&{\mathrm{9}}&{\mathrm{0}}&{\mathrm{9}}&{\mathrm{1}}\end{bmatrix} \\ $$$$\mathrm{Solve}\:\mathrm{above}\:\mathrm{system}\:\mathrm{by}\:\mathrm{using}\:\:\mathrm{variable}\: \\ $$$$\mathrm{substitution},\:\mathrm{algebraic}\:\mathrm{addition}\:\left(\mathrm{or}\:\:\mathrm{equivalent}\:\right. \\ $$$$\left.\mathrm{tranformation}\:\mathrm{for}\:\mathrm{matrixes}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{a}=\mathrm{0},\mathrm{b}=\frac{\mathrm{1}}{\mathrm{27}},\mathrm{c}=\frac{\mathrm{1}}{\mathrm{18}},\mathrm{d}=\frac{\mathrm{4}}{\mathrm{27}},\mathrm{f}=\frac{−\mathrm{2}}{\mathrm{27}},\mathrm{e}=\frac{\mathrm{1}}{\mathrm{54}} \\ $$$$\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{6}} +\mathrm{27}}=\frac{\mathrm{1}}{\mathrm{27}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\mathrm{x}+\mathrm{2}}{\mathrm{54}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}\right)}−\frac{\mathrm{x}−\mathrm{2}}{\mathrm{54}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}\right)} \\ $$$$\mathrm{Hence} \\ $$$$\frac{\mathrm{324}}{\mathrm{x}^{\mathrm{3}} +\mathrm{27}}=\frac{\mathrm{12}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\mathrm{6}\left(\mathrm{x}+\mathrm{2}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}}−\frac{\mathrm{6}\left(\mathrm{x}−\mathrm{2}\right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{3}} \\ $$

Commented by mathdave last updated on 25/Aug/20

thanks this was wonderfully done by a great man  .you have tried .u should have throw more light  on how you came about letters from d matrix box  for people that are not pro like you .hw did you  get those letters

$${thanks}\:{this}\:{was}\:{wonderfully}\:{done}\:{by}\:{a}\:{great}\:{man} \\ $$$$.{you}\:{have}\:{tried}\:.{u}\:{should}\:{have}\:{throw}\:{more}\:{light} \\ $$$${on}\:{how}\:{you}\:{came}\:{about}\:{letters}\:{from}\:{d}\:{matrix}\:{box} \\ $$$${for}\:{people}\:{that}\:{are}\:{not}\:{pro}\:{like}\:{you}\:.{hw}\:{did}\:{you} \\ $$$${get}\:{those}\:{letters}\: \\ $$

Commented by 1549442205PVT last updated on 26/Aug/20

I used indefined −coefficient method  which stated that:  “two the polynomials are equal ∀x  if  and only if the their corresponding   coefficients are equal ”  The system (∗)can be solved by many  different ways:can use variable  substituting ,algebraic plus,transform  ation equivalent matrix...

$$\mathrm{I}\:\mathrm{used}\:\mathrm{indefined}\:−\mathrm{coefficient}\:\mathrm{method} \\ $$$$\mathrm{which}\:\mathrm{stated}\:\mathrm{that}: \\ $$$$``\mathrm{two}\:\mathrm{the}\:\mathrm{polynomials}\:\mathrm{are}\:\mathrm{equal}\:\forall\mathrm{x}\:\:\mathrm{if} \\ $$$$\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{the}\:\mathrm{their}\:\mathrm{corresponding}\: \\ $$$$\mathrm{coefficients}\:\mathrm{are}\:\mathrm{equal}\:'' \\ $$$$\mathrm{The}\:\mathrm{system}\:\left(\ast\right)\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{by}\:\mathrm{many} \\ $$$$\mathrm{different}\:\mathrm{ways}:\mathrm{can}\:\mathrm{use}\:\mathrm{variable} \\ $$$$\mathrm{substituting}\:,\mathrm{algebraic}\:\mathrm{plus},\mathrm{transform} \\ $$$$\mathrm{ation}\:\mathrm{equivalent}\:\mathrm{matrix}... \\ $$

Answered by Her_Majesty last updated on 25/Aug/20

wrong  ((324)/(x^6 +27))=((324)/((x^2 +3)(x^2 +3x+3)(x^2 −3x+3)))=  =((12)/(x^2 +3))+((6(x+2))/(x^2 +3x+3))−((6(x−2))/(x^2 −3x+3))  now it′s easy to solve the integral by using the  common known formula

$${wrong} \\ $$$$\frac{\mathrm{324}}{{x}^{\mathrm{6}} +\mathrm{27}}=\frac{\mathrm{324}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{3}\right)}= \\ $$$$=\frac{\mathrm{12}}{{x}^{\mathrm{2}} +\mathrm{3}}+\frac{\mathrm{6}\left({x}+\mathrm{2}\right)}{{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{3}}−\frac{\mathrm{6}\left({x}−\mathrm{2}\right)}{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{3}} \\ $$$${now}\:{it}'{s}\:{easy}\:{to}\:{solve}\:{the}\:{integral}\:{by}\:{using}\:{the} \\ $$$${common}\:{known}\:{formula} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com