Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 112114 by mnjuly1970 last updated on 06/Sep/20

  solution of  Φ=∫_0 ^1 xH_x dx =^(γ+ψ(x+1))  ∫_0 ^( 1) x(γ+ψ(x+1))dx    =^(ψ(x+1)=(1/x)+ψ(x))   ∫_0 ^( 1) x(γ+(1/x)+ψ(x))dx  =(γ/2)+1+ ∫_0 ^( 1) x.(d/dx)(ln(Γ(x)))  =(γ/2)+1+[xln(Γ(x))]_0 ^1 −∫_0 ^( 1) ln(Γ(x))dx    we  know (why?) ∫_0 ^( 1) ln(Γ(x))dx=ln((√(2π)) )   and  lim_(x→0^+ ) (xln(Γ(x)))=0 (why??)  finally Φ =∫_0 ^( 1) xH_x dx=(γ/2)+1−ln((√(2π))) ✓    m.n.july 1970....

$$\:\:{solution}\:{of} \\ $$$$\Phi=\int_{\mathrm{0}} ^{\mathrm{1}} {xH}_{{x}} {dx}\:\overset{\gamma+\psi\left({x}+\mathrm{1}\right)} {=}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}\left(\gamma+\psi\left({x}+\mathrm{1}\right)\right){dx}\: \\ $$$$\:\overset{\psi\left({x}+\mathrm{1}\right)=\frac{\mathrm{1}}{{x}}+\psi\left({x}\right)} {=}\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}\left(\gamma+\frac{\mathrm{1}}{{x}}+\psi\left({x}\right)\right){dx} \\ $$$$=\frac{\gamma}{\mathrm{2}}+\mathrm{1}+\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\frac{{d}}{{dx}}\left({ln}\left(\Gamma\left({x}\right)\right)\right) \\ $$$$=\frac{\gamma}{\mathrm{2}}+\mathrm{1}+\left[{xln}\left(\Gamma\left({x}\right)\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx} \\ $$$$\:\:{we}\:\:{know}\:\left({why}?\right)\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\Gamma\left({x}\right)\right){dx}={ln}\left(\sqrt{\mathrm{2}\pi}\:\right) \\ $$$$\:{and}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left({xln}\left(\Gamma\left({x}\right)\right)\right)=\mathrm{0}\:\left({why}??\right) \\ $$$${finally}\:\Phi\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} {xH}_{{x}} {dx}=\frac{\gamma}{\mathrm{2}}+\mathrm{1}−{ln}\left(\sqrt{\mathrm{2}\pi}\right)\:\checkmark \\ $$$$\:\:{m}.{n}.{july}\:\mathrm{1970}.... \\ $$$$\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com