Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 112356 by ajfour last updated on 07/Sep/20

Commented by ajfour last updated on 07/Sep/20

Find minimum length of PQ in  terms of a and b.

$${Find}\:{minimum}\:{length}\:{of}\:{PQ}\:{in} \\ $$$${terms}\:{of}\:{a}\:{and}\:{b}.\:\:\:\:\:\:\: \\ $$

Answered by bemath last updated on 07/Sep/20

let Q(x_1 ,x_1 ^2 +b)  tangent line at Q⇒((y+x_1 ^2 +b)/2)=x_1 x +b  y=2x_1 x+b−x_1 ^2  , with gradient  m_1 = 2x_1   let P(y_2 ^2 +a , y_2 ) , tangent at P parallel  to tangent line at P  ((x+y_2 ^2 +a)/2) = y_2 y +a  y = ((x+y_2 ^2 −a)/y_2 ) with gradient m_2 =(1/y_2 )  so 2x_1  = (1/y_2 ) or y_2 =(1/(2x_1 ))  therefore  { ((Q(x_1 ,x_1 ^2 +b))),((P((1/(4x_1 ^2 ))+a , (1/(2x_1 ^2 ))))) :}  then PQ=(√((x_1 −a−(1/(4x_1 ^2 )))^2 +(x_1 ^2 +b−(1/(2x_1 ^2 )))^2 ))

$$\mathrm{let}\:\mathrm{Q}\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{b}\right) \\ $$$$\mathrm{tangent}\:\mathrm{line}\:\mathrm{at}\:\mathrm{Q}\Rightarrow\frac{\mathrm{y}+\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{b}}{\mathrm{2}}=\mathrm{x}_{\mathrm{1}} \mathrm{x}\:+\mathrm{b} \\ $$$$\mathrm{y}=\mathrm{2x}_{\mathrm{1}} \mathrm{x}+\mathrm{b}−\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} \:,\:\mathrm{with}\:\mathrm{gradient} \\ $$$$\mathrm{m}_{\mathrm{1}} =\:\mathrm{2x}_{\mathrm{1}} \\ $$$$\mathrm{let}\:\mathrm{P}\left(\mathrm{y}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{a}\:,\:\mathrm{y}_{\mathrm{2}} \right)\:,\:\mathrm{tangent}\:\mathrm{at}\:\mathrm{P}\:\mathrm{parallel} \\ $$$$\mathrm{to}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{at}\:\mathrm{P} \\ $$$$\frac{\mathrm{x}+\mathrm{y}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{a}}{\mathrm{2}}\:=\:\mathrm{y}_{\mathrm{2}} \mathrm{y}\:+\mathrm{a} \\ $$$$\mathrm{y}\:=\:\frac{\mathrm{x}+\mathrm{y}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{a}}{\mathrm{y}_{\mathrm{2}} }\:\mathrm{with}\:\mathrm{gradient}\:\mathrm{m}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{y}_{\mathrm{2}} } \\ $$$$\mathrm{so}\:\mathrm{2x}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{y}_{\mathrm{2}} }\:\mathrm{or}\:\mathrm{y}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{1}} } \\ $$$$\mathrm{therefore}\:\begin{cases}{\mathrm{Q}\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{b}\right)}\\{\mathrm{P}\left(\frac{\mathrm{1}}{\mathrm{4x}_{\mathrm{1}} ^{\mathrm{2}} }+\mathrm{a}\:,\:\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{1}} ^{\mathrm{2}} }\right)}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{PQ}=\sqrt{\left(\mathrm{x}_{\mathrm{1}} −\mathrm{a}−\frac{\mathrm{1}}{\mathrm{4x}_{\mathrm{1}} ^{\mathrm{2}} }\right)^{\mathrm{2}} +\left(\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{b}−\frac{\mathrm{1}}{\mathrm{2x}_{\mathrm{1}} ^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$

Commented by ajfour last updated on 07/Sep/20

Sir please find x_1  such that PQ be min.

$${Sir}\:{please}\:{find}\:{x}_{\mathrm{1}} \:{such}\:{that}\:{PQ}\:{be}\:{min}. \\ $$

Answered by mr W last updated on 07/Sep/20

P(a+p^2 ,p)  Q(q,b+q^2 )  (dy/dx)∣_Q =2q  (dy/dx)∣_P =(1/(dx/dy))=(1/(2p))  ⇒2q=(1/(2p))  ⇒pq=(1/4)  ((b+q^2 −p)/(q−a−p^2 ))=−2p  b+q^2 −p=−2pq+2ap+2p^3   b+(1/(16p^2 ))−p=−(1/2)+2ap+2p^3   32p^5 +16(2a+1)p^3 −8(1+2b)p^2 −1=0  λ=2p  ⇒λ^5 +2(1+2a)λ^3 −2(1+2b)λ^2 −1=0

$${P}\left({a}+{p}^{\mathrm{2}} ,{p}\right) \\ $$$${Q}\left({q},{b}+{q}^{\mathrm{2}} \right) \\ $$$$\frac{{dy}}{{dx}}\mid_{{Q}} =\mathrm{2}{q} \\ $$$$\frac{{dy}}{{dx}}\mid_{{P}} =\frac{\mathrm{1}}{\frac{{dx}}{{dy}}}=\frac{\mathrm{1}}{\mathrm{2}{p}} \\ $$$$\Rightarrow\mathrm{2}{q}=\frac{\mathrm{1}}{\mathrm{2}{p}} \\ $$$$\Rightarrow{pq}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{{b}+{q}^{\mathrm{2}} −{p}}{{q}−{a}−{p}^{\mathrm{2}} }=−\mathrm{2}{p} \\ $$$${b}+{q}^{\mathrm{2}} −{p}=−\mathrm{2}{pq}+\mathrm{2}{ap}+\mathrm{2}{p}^{\mathrm{3}} \\ $$$${b}+\frac{\mathrm{1}}{\mathrm{16}{p}^{\mathrm{2}} }−{p}=−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}{ap}+\mathrm{2}{p}^{\mathrm{3}} \\ $$$$\mathrm{32}{p}^{\mathrm{5}} +\mathrm{16}\left(\mathrm{2}{a}+\mathrm{1}\right){p}^{\mathrm{3}} −\mathrm{8}\left(\mathrm{1}+\mathrm{2}{b}\right){p}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\lambda=\mathrm{2}{p} \\ $$$$\Rightarrow\lambda^{\mathrm{5}} +\mathrm{2}\left(\mathrm{1}+\mathrm{2}{a}\right)\lambda^{\mathrm{3}} −\mathrm{2}\left(\mathrm{1}+\mathrm{2}{b}\right)\lambda^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$

Commented by mr W last updated on 07/Sep/20

Commented by ajfour last updated on 07/Sep/20

Thank you Sir ; very well presented!

$${Thank}\:{you}\:{Sir}\:;\:{very}\:{well}\:{presented}! \\ $$

Answered by ajfour last updated on 07/Sep/20

P (p^2 +a, p)   ;  Q(q, q^2 +b)  eqn. of normal at P  y−p=−2p(x−p^2 −a)  eqn. of normal at Q  y−q^2 −b=−(1/(2q))(x−q)  −−−−−−−−−−−−−−−−−   pq=(1/4)   &   p+2p^3 +2ap= q^2 +b+(1/2)  −−−−−−−−−−−−−−−−−  ⇒  p+2p(p^2 +a)=q^2 +b+(1/2)  L_(PQ) ^2 =(p^2 −q+a)^2 +(q^2 −p+b)^2           = (p^2 +a−q)^2 +{2p(p^2 +a)−(1/2)}^2           = ((1/(4p^2 ))+1){2p(p^2 +a)−(1/2)}^2       (L_(PQ) )_(min)  =(√(1+4p^2 ))(p^2 +a−(1/(4p)))     −−−−−−−−−−−−−−−−

$${P}\:\left({p}^{\mathrm{2}} +{a},\:{p}\right)\:\:\:;\:\:{Q}\left({q},\:{q}^{\mathrm{2}} +{b}\right) \\ $$$${eqn}.\:{of}\:{normal}\:{at}\:{P} \\ $$$${y}−{p}=−\mathrm{2}{p}\left({x}−{p}^{\mathrm{2}} −{a}\right) \\ $$$${eqn}.\:{of}\:{normal}\:{at}\:{Q} \\ $$$${y}−{q}^{\mathrm{2}} −{b}=−\frac{\mathrm{1}}{\mathrm{2}{q}}\left({x}−{q}\right) \\ $$$$−−−−−−−−−−−−−−−−− \\ $$$$\:{pq}=\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\&\:\:\:{p}+\mathrm{2}{p}^{\mathrm{3}} +\mathrm{2}{ap}=\:{q}^{\mathrm{2}} +{b}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$−−−−−−−−−−−−−−−−− \\ $$$$\Rightarrow\:\:{p}+\mathrm{2}{p}\left({p}^{\mathrm{2}} +{a}\right)={q}^{\mathrm{2}} +{b}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${L}_{{PQ}} ^{\mathrm{2}} =\left({p}^{\mathrm{2}} −{q}+{a}\right)^{\mathrm{2}} +\left({q}^{\mathrm{2}} −{p}+{b}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\:\left({p}^{\mathrm{2}} +{a}−{q}\right)^{\mathrm{2}} +\left\{\mathrm{2}{p}\left({p}^{\mathrm{2}} +{a}\right)−\frac{\mathrm{1}}{\mathrm{2}}\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\:\left(\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{2}} }+\mathrm{1}\right)\left\{\mathrm{2}{p}\left({p}^{\mathrm{2}} +{a}\right)−\frac{\mathrm{1}}{\mathrm{2}}\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\left({L}_{{PQ}} \right)_{{min}} \:=\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }\left({p}^{\mathrm{2}} +{a}−\frac{\mathrm{1}}{\mathrm{4}{p}}\right) \\ $$$$\:\:\:−−−−−−−−−−−−−−−− \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com