Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 112478 by dw last updated on 08/Sep/20

If P(x)= x^3 +ax^2 +bx+c, with a, b and c real numbers.  Roots of P(x) z+3i, z+9i and 2z−4, find ∣a+b+c∣.  Note: z is complex number.

$${If}\:{P}\left({x}\right)=\:{x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c},\:{with}\:{a},\:{b}\:{and}\:{c}\:{real}\:{numbers}. \\ $$$${Roots}\:{of}\:{P}\left({x}\right)\:{z}+\mathrm{3}{i},\:{z}+\mathrm{9}{i}\:{and}\:\mathrm{2}{z}−\mathrm{4},\:{find}\:\mid{a}+{b}+{c}\mid. \\ $$$$\boldsymbol{{N}}{ote}:\:{z}\:{is}\:{complex}\:{number}. \\ $$

Answered by floor(10²Eta[1]) last updated on 08/Sep/20

we know that a cubic polynomial with  real coefficients can have:  3 real roots or 1 real root and 2 complex roots  because if a polynomial has a complex   root, the conjugate of this complex number  is also a root.  If z∈R⇒2z−4∈R, but if z+3i and z+9i  are the complex roots so z−3i and z−9i  also should be. But that′s impossible  because we just have 3 roots.  So z have an imaginary part⇒2z−4  is one of the complex roots.  z=u+vi  roots: [2u−4+2vi], [u+(3+v)i], [u+(9+v)i]  1 case:  u+(9+v)i is the real root:  ⇒9+v=0∴v=−9  so (2u−4−18i) is the conjugate of (u−6i)  but this is impossible because the  imaginary parts are different.  2 case:  u+(3+v)i is the real root:  ⇒3+v=0∴v=−3  so (2u−4−6i) is the conjugate of (u+6i)  ⇒2u−4=u∴u=4  roots: (4), (4+6i), (4−6i)  ⇒P(x)=(x−4)(x−4−6i)(x−4+6i)  P(1)=1+a+b+c  =−3(−3−6i)(−3+6i)=−3.45  ⇒a+b+c=−135−1=−136  ∣a+b+c∣=136.

$$\mathrm{we}\:\mathrm{know}\:\mathrm{that}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{polynomial}\:\mathrm{with} \\ $$$$\mathrm{real}\:\mathrm{coefficients}\:\mathrm{can}\:\mathrm{have}: \\ $$$$\mathrm{3}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{or}\:\mathrm{1}\:\mathrm{real}\:\mathrm{root}\:\mathrm{and}\:\mathrm{2}\:\mathrm{complex}\:\mathrm{roots} \\ $$$$\mathrm{because}\:\mathrm{if}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{has}\:\mathrm{a}\:\mathrm{complex}\: \\ $$$$\mathrm{root},\:\mathrm{the}\:\mathrm{conjugate}\:\mathrm{of}\:\mathrm{this}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{root}. \\ $$$$\mathrm{If}\:\mathrm{z}\in\mathbb{R}\Rightarrow\mathrm{2z}−\mathrm{4}\in\mathbb{R},\:\mathrm{but}\:\mathrm{if}\:\mathrm{z}+\mathrm{3i}\:\mathrm{and}\:\mathrm{z}+\mathrm{9i} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{roots}\:\mathrm{so}\:\mathrm{z}−\mathrm{3i}\:\mathrm{and}\:\mathrm{z}−\mathrm{9i} \\ $$$$\mathrm{also}\:\mathrm{should}\:\mathrm{be}.\:\mathrm{But}\:\mathrm{that}'\mathrm{s}\:\mathrm{impossible} \\ $$$$\mathrm{because}\:\mathrm{we}\:\mathrm{just}\:\mathrm{have}\:\mathrm{3}\:\mathrm{roots}. \\ $$$$\mathrm{So}\:\mathrm{z}\:\mathrm{have}\:\mathrm{an}\:\mathrm{imaginary}\:\mathrm{part}\Rightarrow\mathrm{2z}−\mathrm{4} \\ $$$$\mathrm{is}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{roots}. \\ $$$$\mathrm{z}=\mathrm{u}+\mathrm{vi} \\ $$$$\mathrm{roots}:\:\left[\mathrm{2u}−\mathrm{4}+\mathrm{2vi}\right],\:\left[\mathrm{u}+\left(\mathrm{3}+\mathrm{v}\right)\mathrm{i}\right],\:\left[\mathrm{u}+\left(\mathrm{9}+\mathrm{v}\right)\mathrm{i}\right] \\ $$$$\mathrm{1}\:\mathrm{case}: \\ $$$$\mathrm{u}+\left(\mathrm{9}+\mathrm{v}\right)\mathrm{i}\:\mathrm{is}\:\mathrm{the}\:\mathrm{real}\:\mathrm{root}: \\ $$$$\Rightarrow\mathrm{9}+\mathrm{v}=\mathrm{0}\therefore\mathrm{v}=−\mathrm{9} \\ $$$$\mathrm{so}\:\left(\mathrm{2u}−\mathrm{4}−\mathrm{18i}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{conjugate}\:\mathrm{of}\:\left(\mathrm{u}−\mathrm{6i}\right) \\ $$$$\mathrm{but}\:\mathrm{this}\:\mathrm{is}\:\mathrm{impossible}\:\mathrm{because}\:\mathrm{the} \\ $$$$\mathrm{imaginary}\:\mathrm{parts}\:\mathrm{are}\:\mathrm{different}. \\ $$$$\mathrm{2}\:\mathrm{case}: \\ $$$$\mathrm{u}+\left(\mathrm{3}+\mathrm{v}\right)\mathrm{i}\:\mathrm{is}\:\mathrm{the}\:\mathrm{real}\:\mathrm{root}: \\ $$$$\Rightarrow\mathrm{3}+\mathrm{v}=\mathrm{0}\therefore\mathrm{v}=−\mathrm{3} \\ $$$$\mathrm{so}\:\left(\mathrm{2u}−\mathrm{4}−\mathrm{6i}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{conjugate}\:\mathrm{of}\:\left(\mathrm{u}+\mathrm{6i}\right) \\ $$$$\Rightarrow\mathrm{2u}−\mathrm{4}=\mathrm{u}\therefore\mathrm{u}=\mathrm{4} \\ $$$$\mathrm{roots}:\:\left(\mathrm{4}\right),\:\left(\mathrm{4}+\mathrm{6i}\right),\:\left(\mathrm{4}−\mathrm{6i}\right) \\ $$$$\Rightarrow\mathrm{P}\left(\mathrm{x}\right)=\left(\mathrm{x}−\mathrm{4}\right)\left(\mathrm{x}−\mathrm{4}−\mathrm{6i}\right)\left(\mathrm{x}−\mathrm{4}+\mathrm{6i}\right) \\ $$$$\mathrm{P}\left(\mathrm{1}\right)=\mathrm{1}+\mathrm{a}+\mathrm{b}+\mathrm{c} \\ $$$$=−\mathrm{3}\left(−\mathrm{3}−\mathrm{6i}\right)\left(−\mathrm{3}+\mathrm{6i}\right)=−\mathrm{3}.\mathrm{45} \\ $$$$\Rightarrow\mathrm{a}+\mathrm{b}+\mathrm{c}=−\mathrm{135}−\mathrm{1}=−\mathrm{136} \\ $$$$\mid\mathrm{a}+\mathrm{b}+\mathrm{c}\mid=\mathrm{136}. \\ $$

Commented by MJS_new last updated on 08/Sep/20

good job!

$$\mathrm{good}\:\mathrm{job}! \\ $$

Commented by dw last updated on 09/Sep/20

Thank you Sir

$${Thank}\:{you}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com