Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112642 by mathdave last updated on 09/Sep/20

question proposed by A8;15:  ∫_0 ^1 ((ln(ln(1/x)))/(1+x))dx

$${question}\:{proposed}\:{by}\:{A}\mathrm{8};\mathrm{15}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{ln}\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}}{dx} \\ $$

Answered by mathdave last updated on 09/Sep/20

my solution goes   first we need to convert from  malsten′s integral to verdi′s integral  let I=∫_0 ^1 ((ln(ln(1/x)))/(1+x))dx    let t=ln((1/x))  x=e^(−t)   and dx=−e^(−t)   I=∫_∞ ^0 ((lnt)/(1+e^(−t) ))×−e^(−t) dt=∫_0 ^∞ ((lnt)/(1+e^(−t) ))e^(−t) dt  I=∫_0 ^∞ ((lnt)/(1+e^t ))dt  I=(∂/∂a)∣_(a=0) ∫_0 ^∞ (t^a /(1+e^t ))dt  but note ∫_0 ^∞ (t^s /(1+e^t ))dt=η(s+1)Γ(s+1)  I=(∂/∂a)∣_(a=0) [η(a+1)Γ(a+1)]  I=[η′(a+1)Γ(a+1)+η(a+1)Γ^′ (a+1)]_(a=0)   but Γ(a+1)=Γ(a+1)ψ(a+1)  I=[η^′ (a+1)Γ(a+1)+η(a+1)Γ(a+1)ψ(a+1)]_(a=0)   I=[η^′ (1)Γ(1)+η(1)Γ(1)ψ(1)]  but  η^′ (1)=−γln2−(1/2)ln^2 (2),Γ(1)=1,η(1)=ln2,ψ(1)=γ  I=−γln2−(1/2)ln^2 (2)+γln2=−(1/2)ln^2 (2)  ∵∫_0 ^1 ((ln(ln(1/x)))/(1+x))dx=−(1/2)ln^2 (2)  by mathdave(09/08/2020)

$${my}\:{solution}\:{goes}\: \\ $$$${first}\:{we}\:{need}\:{to}\:{convert}\:{from} \\ $$$${malsten}'{s}\:{integral}\:{to}\:{verdi}'{s}\:{integral} \\ $$$${let}\:{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{ln}\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}}{dx}\:\:\:\:{let}\:{t}=\mathrm{ln}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$${x}={e}^{−{t}} \:\:{and}\:{dx}=−{e}^{−{t}} \\ $$$${I}=\int_{\infty} ^{\mathrm{0}} \frac{\mathrm{ln}{t}}{\mathrm{1}+{e}^{−{t}} }×−{e}^{−{t}} {dt}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}{t}}{\mathrm{1}+{e}^{−{t}} }{e}^{−{t}} {dt} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}{t}}{\mathrm{1}+{e}^{{t}} }{dt} \\ $$$${I}=\frac{\partial}{\partial{a}}\mid_{{a}=\mathrm{0}} \int_{\mathrm{0}} ^{\infty} \frac{{t}^{{a}} }{\mathrm{1}+{e}^{{t}} }{dt} \\ $$$${but}\:{note}\:\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{s}} }{\mathrm{1}+{e}^{{t}} }{dt}=\eta\left({s}+\mathrm{1}\right)\Gamma\left({s}+\mathrm{1}\right) \\ $$$${I}=\frac{\partial}{\partial{a}}\mid_{{a}=\mathrm{0}} \left[\eta\left({a}+\mathrm{1}\right)\Gamma\left({a}+\mathrm{1}\right)\right] \\ $$$${I}=\left[\eta'\left({a}+\mathrm{1}\right)\Gamma\left({a}+\mathrm{1}\right)+\eta\left({a}+\mathrm{1}\right)\Gamma^{'} \left({a}+\mathrm{1}\right)\right]_{{a}=\mathrm{0}} \\ $$$${but}\:\Gamma\left({a}+\mathrm{1}\right)=\Gamma\left({a}+\mathrm{1}\right)\psi\left({a}+\mathrm{1}\right) \\ $$$${I}=\left[\eta^{'} \left({a}+\mathrm{1}\right)\Gamma\left({a}+\mathrm{1}\right)+\eta\left({a}+\mathrm{1}\right)\Gamma\left({a}+\mathrm{1}\right)\psi\left({a}+\mathrm{1}\right)\right]_{{a}=\mathrm{0}} \\ $$$${I}=\left[\eta^{'} \left(\mathrm{1}\right)\Gamma\left(\mathrm{1}\right)+\eta\left(\mathrm{1}\right)\Gamma\left(\mathrm{1}\right)\psi\left(\mathrm{1}\right)\right] \\ $$$${but} \\ $$$$\eta^{'} \left(\mathrm{1}\right)=−\gamma\mathrm{ln2}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right),\Gamma\left(\mathrm{1}\right)=\mathrm{1},\eta\left(\mathrm{1}\right)=\mathrm{ln2},\psi\left(\mathrm{1}\right)=\gamma \\ $$$${I}=−\gamma\mathrm{ln2}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\gamma\mathrm{ln2}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{ln}\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}}{dx}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$${by}\:{mathdave}\left(\mathrm{09}/\mathrm{08}/\mathrm{2020}\right) \\ $$

Commented by mnjuly1970 last updated on 09/Sep/20

very nice  mr  bathdave...

$${very}\:{nice}\:\:{mr}\:\:{bathdave}... \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com