Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 112971 by ajfour last updated on 10/Sep/20

Commented by ajfour last updated on 11/Sep/20

A small sphere of radius r, mass m,  collides elastically with another   sphere of same density as that of  smaller sphere. Find radius of  larger sphere such that its range  x be maximum.

$${A}\:{small}\:{sphere}\:{of}\:{radius}\:{r},\:{mass}\:{m}, \\ $$$${collides}\:{elastically}\:{with}\:{another}\: \\ $$$${sphere}\:{of}\:{same}\:{density}\:{as}\:{that}\:{of} \\ $$$${smaller}\:{sphere}.\:{Find}\:{radius}\:{of} \\ $$$${larger}\:{sphere}\:{such}\:{that}\:{its}\:{range} \\ $$$${x}\:{be}\:{maximum}. \\ $$$$\:\:\:\:\: \\ $$

Answered by mr W last updated on 12/Sep/20

Commented by mr W last updated on 12/Sep/20

M=((R/r))^3 m  sin θ=((R−r)/(R+r))=1−(2/((R/r)+1))  ⇒(R/r)=(2/(1−sin θ))−1  mu=MV cos θ+mv  ⇒u=((R/r))^3 V cos θ+v  ((mu^2 )/2)=((MV^2 )/2)+((mv^2 )/2)  ⇒u^2 =((R/r))^3 V^2 +v^2   ⇒u^2 =((R/r))^3 V^2 +[u−((R/r))^3 cos θ V]^2   ⇒[1+((R/r))^3 cos^2  θ]V=2u cos θ  ⇒V=((2u cos θ)/(1+((R/r))^3 cos^2  θ))  0=V sin θ ×(x/(V cos θ))−(g/2)((x/(V cos θ)))^2   ⇒gx=sin 2θ V^2   ⇒gx=sin 2θ[((2u cos θ)/(1+((R/r))^3 cos^2  θ))]^2   ⇒((gx)/(8u^2 ))=((sin θ cos^3  θ)/([1+((R/r))^3 cos^2  θ]^2 ))  ⇒((gx)/(8u^2 ))=((sin θ cos^3  θ)/([1+((2/(1−sin θ))−1)^3 cos^2  θ]^2 ))    x_(max)  is at θ=6.9827°  or (R/r)=1.277

$${M}=\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} {m} \\ $$$$\mathrm{sin}\:\theta=\frac{{R}−{r}}{{R}+{r}}=\mathrm{1}−\frac{\mathrm{2}}{\frac{{R}}{{r}}+\mathrm{1}} \\ $$$$\Rightarrow\frac{{R}}{{r}}=\frac{\mathrm{2}}{\mathrm{1}−\mathrm{sin}\:\theta}−\mathrm{1} \\ $$$${mu}={MV}\:\mathrm{cos}\:\theta+{mv} \\ $$$$\Rightarrow{u}=\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} {V}\:\mathrm{cos}\:\theta+{v} \\ $$$$\frac{{mu}^{\mathrm{2}} }{\mathrm{2}}=\frac{{MV}^{\mathrm{2}} }{\mathrm{2}}+\frac{{mv}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow{u}^{\mathrm{2}} =\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} {V}^{\mathrm{2}} +{v}^{\mathrm{2}} \\ $$$$\Rightarrow{u}^{\mathrm{2}} =\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} {V}^{\mathrm{2}} +\left[{u}−\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} \mathrm{cos}\:\theta\:{V}\right]^{\mathrm{2}} \\ $$$$\Rightarrow\left[\mathrm{1}+\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} \mathrm{cos}^{\mathrm{2}} \:\theta\right]{V}=\mathrm{2}{u}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{V}=\frac{\mathrm{2}{u}\:\mathrm{cos}\:\theta}{\mathrm{1}+\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} \mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$\mathrm{0}={V}\:\mathrm{sin}\:\theta\:×\frac{{x}}{{V}\:\mathrm{cos}\:\theta}−\frac{{g}}{\mathrm{2}}\left(\frac{{x}}{{V}\:\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{gx}=\mathrm{sin}\:\mathrm{2}\theta\:{V}^{\mathrm{2}} \\ $$$$\Rightarrow{gx}=\mathrm{sin}\:\mathrm{2}\theta\left[\frac{\mathrm{2}{u}\:\mathrm{cos}\:\theta}{\mathrm{1}+\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} \mathrm{cos}^{\mathrm{2}} \:\theta}\right]^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{gx}}{\mathrm{8}{u}^{\mathrm{2}} }=\frac{\mathrm{sin}\:\theta\:\mathrm{cos}^{\mathrm{3}} \:\theta}{\left[\mathrm{1}+\left(\frac{{R}}{{r}}\right)^{\mathrm{3}} \mathrm{cos}^{\mathrm{2}} \:\theta\right]^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{gx}}{\mathrm{8}{u}^{\mathrm{2}} }=\frac{\mathrm{sin}\:\theta\:\mathrm{cos}^{\mathrm{3}} \:\theta}{\left[\mathrm{1}+\left(\frac{\mathrm{2}}{\mathrm{1}−\mathrm{sin}\:\theta}−\mathrm{1}\right)^{\mathrm{3}} \mathrm{cos}^{\mathrm{2}} \:\theta\right]^{\mathrm{2}} } \\ $$$$ \\ $$$${x}_{{max}} \:{is}\:{at}\:\theta=\mathrm{6}.\mathrm{9827}° \\ $$$${or}\:\frac{{R}}{{r}}=\mathrm{1}.\mathrm{277} \\ $$

Commented by mr W last updated on 13/Sep/20

to be honest, i′m not sure if it′s  correct to take the direction of V  at angle θ.

$${to}\:{be}\:{honest},\:{i}'{m}\:{not}\:{sure}\:{if}\:{it}'{s} \\ $$$${correct}\:{to}\:{take}\:{the}\:{direction}\:{of}\:{V} \\ $$$${at}\:{angle}\:\theta. \\ $$

Commented by ajfour last updated on 14/Sep/20

Thank you Sir,  Perfect solution!    but if we let  (R/r)=(2/(1−sin θ))−1= λ  ((gx)/(8u^2 ))=((8λ(√λ)(λ−1))/((4λ^4 +λ^2 +2λ+1)^2 ))  Its  max occurs when     44λ^5 −52λ^4 +3λ^3 −7λ^2 −7λ+3=0    we get three roots, only one of them    is > 1 ,   so that λ = (R/r) ≈ 1.277

$$\mathcal{T}{hank}\:{you}\:{Sir},\:\:{Perfect}\:{solution}! \\ $$$$\:\:{but}\:{if}\:{we}\:{let}\:\:\frac{{R}}{{r}}=\frac{\mathrm{2}}{\mathrm{1}−\mathrm{sin}\:\theta}−\mathrm{1}=\:\lambda \\ $$$$\frac{{gx}}{\mathrm{8}{u}^{\mathrm{2}} }=\frac{\mathrm{8}\lambda\sqrt{\lambda}\left(\lambda−\mathrm{1}\right)}{\left(\mathrm{4}\lambda^{\mathrm{4}} +\lambda^{\mathrm{2}} +\mathrm{2}\lambda+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${Its}\:\:{max}\:{occurs}\:{when} \\ $$$$\:\:\:\mathrm{44}\lambda^{\mathrm{5}} −\mathrm{52}\lambda^{\mathrm{4}} +\mathrm{3}\lambda^{\mathrm{3}} −\mathrm{7}\lambda^{\mathrm{2}} −\mathrm{7}\lambda+\mathrm{3}=\mathrm{0} \\ $$$$\:\:{we}\:{get}\:{three}\:{roots},\:{only}\:{one}\:{of}\:{them} \\ $$$$\:\:{is}\:>\:\mathrm{1}\:,\:\:\:{so}\:{that}\:\lambda\:=\:\frac{{R}}{{r}}\:\approx\:\mathrm{1}.\mathrm{277}\: \\ $$

Commented by mr W last updated on 14/Sep/20

great!

$${great}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com