Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 114043 by Dwaipayan Shikari last updated on 16/Sep/20

Σ_(n=1) ^∞ (1/(n^3 +1))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} +\mathrm{1}} \\ $$

Answered by maths mind last updated on 21/Sep/20

Σ_(n≥1) (1/((n+1)(n−j)(n−j^− )))  Σ_(n≥1) {(1/(3(n+1)))+(1/(3j^2 (n−j)))+(1/(3j^−^2  (n−j^− )))}  =Σ_(n≥1) {(1/(3(n+1)))+(j/(3(n−j^− )))+(j^− /(3(n−j^− )))}  we can Write it  as Σ_(n≥1) Σ_(w:(w^3 +1=0)) ((1/(3w^2 (n−w))))  =(1/3)Σ_(n≥1) Σ_(w:(w^3 +1=0)) (((−w)/((n−w)))+(w/(n+1)))=Σ_(n≥0) (1/(n^3 +1))  since Σ_(w:(w^3 +1)) w=0   Σ_(n≥0) (1/(n^3 +1))=(1/3)Σ_(n≥0) Σ_(w:(w^3 +1)) (((−w)/(n−w))+(w/(n+1)))  =(1/3)Σ_w wΣ_(n≥0) (((−1)/(n−w))+(1/(n+1)))  =(1/3)Σ_w w(Ψ(−w)+γ)  𝚿 digamma function Ψ(x)=((Γ′(x))/(Γ(x)))  =Σ_(w:(w^3 +1=0)) ((wΨ(−w))/3)+(γ/3)Σ_(w:(w^3 +1=0)) w_(=0)   we get  Σ_(w:(w^3 +1=0)) (w/3)Ψ(−w)=−(1/3)Ψ(1)+((1+i(√3))/6)Ψ(−((1+i(√3))/2))  +((1−i(√3))/6)Ψ(((−1+i(√3))/2))⋍0.6865

$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}−{j}\right)\left({n}−\overset{−} {{j}}\right)} \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\left\{\frac{\mathrm{1}}{\mathrm{3}\left({n}+\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{3}{j}^{\mathrm{2}} \left({n}−{j}\right)}+\frac{\mathrm{1}}{\mathrm{3}\overset{−^{\mathrm{2}} } {{j}}\left({n}−\overset{−} {{j}}\right)}\right\} \\ $$$$=\underset{{n}\geqslant\mathrm{1}} {\sum}\left\{\frac{\mathrm{1}}{\mathrm{3}\left({n}+\mathrm{1}\right)}+\frac{{j}}{\mathrm{3}\left({n}−\overset{−} {{j}}\right)}+\frac{\overset{−} {{j}}}{\mathrm{3}\left({n}−\overset{−} {{j}}\right)}\right\} \\ $$$${we}\:{can}\:{Write}\:{it} \\ $$$${as}\:\underset{{n}\geqslant\mathrm{1}} {\sum}\underset{{w}:\left({w}^{\mathrm{3}} +\mathrm{1}=\mathrm{0}\right)} {\sum}\left(\frac{\mathrm{1}}{\mathrm{3}{w}^{\mathrm{2}} \left({n}−{w}\right)}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\underset{{n}\geqslant\mathrm{1}} {\sum}\underset{{w}:\left({w}^{\mathrm{3}} +\mathrm{1}=\mathrm{0}\right)} {\sum}\left(\frac{−{w}}{\left({n}−{w}\right)}+\frac{{w}}{{n}+\mathrm{1}}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{n}^{\mathrm{3}} +\mathrm{1}} \\ $$$${since}\:\underset{{w}:\left({w}^{\mathrm{3}} +\mathrm{1}\right)} {\sum}{w}=\mathrm{0}\: \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{n}^{\mathrm{3}} +\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{3}}\underset{{n}\geqslant\mathrm{0}} {\sum}\underset{{w}:\left({w}^{\mathrm{3}} +\mathrm{1}\right)} {\sum}\left(\frac{−{w}}{{n}−{w}}+\frac{{w}}{{n}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\underset{{w}} {\sum}{w}\underset{{n}\geqslant\mathrm{0}} {\sum}\left(\frac{−\mathrm{1}}{{n}−{w}}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\underset{{w}} {\sum}{w}\left(\Psi\left(−{w}\right)+\gamma\right) \\ $$$$\boldsymbol{\Psi}\:{digamma}\:{function}\:\Psi\left({x}\right)=\frac{\Gamma'\left({x}\right)}{\Gamma\left({x}\right)} \\ $$$$=\underset{{w}:\left({w}^{\mathrm{3}} +\mathrm{1}=\mathrm{0}\right)} {\sum}\frac{{w}\Psi\left(−{w}\right)}{\mathrm{3}}+\frac{\gamma}{\mathrm{3}}\underset{{w}:\left({w}^{\mathrm{3}} +\mathrm{1}=\mathrm{0}\right)} {\sum}\underset{=\mathrm{0}} {{w}} \\ $$$${we}\:{get} \\ $$$$\underset{{w}:\left({w}^{\mathrm{3}} +\mathrm{1}=\mathrm{0}\right)} {\sum}\frac{{w}}{\mathrm{3}}\Psi\left(−\boldsymbol{{w}}\right)=−\frac{\mathrm{1}}{\mathrm{3}}\Psi\left(\mathrm{1}\right)+\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{6}}\Psi\left(−\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$+\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{6}}\Psi\left(\frac{−\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\backsimeq\mathrm{0}.\mathrm{6865} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com