Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116014 by mnjuly1970 last updated on 30/Sep/20

       ...nice  calculus ...      prove :     i:∫_0 ^( ∞) ((ln(x))/((1+x^(√2) )^(√2) )) =0      ✓     ii: ∫_0 ^( ∞)  (dx/((1+x^(1+(√2)) )^(1+(√2)) )) =(1/( (√2)))  ✓       iii: ∫_0 ^( (π/2)) ln(x^2 +ln^2 (cos(x)))dx=πln(ln(2))✓         ... m.n. july.1970...

$$\:\:\:\:\:\:\:...{nice}\:\:{calculus}\:...\:\:\: \\ $$$$\:{prove}\:: \\ $$$$\:\:\:{i}:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\sqrt{\mathrm{2}}} \right)^{\sqrt{\mathrm{2}}} }\:=\mathrm{0}\:\:\:\:\:\:\checkmark \\ $$$$\:\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{1}+\sqrt{\mathrm{2}}} \right)^{\mathrm{1}+\sqrt{\mathrm{2}}} }\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\checkmark\:\: \\ $$$$\:\:\:{iii}:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({x}^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({cos}\left({x}\right)\right)\right){dx}=\pi{ln}\left({ln}\left(\mathrm{2}\right)\right)\checkmark \\ $$$$\:\:\:\:\:\:\:...\:{m}.{n}.\:{july}.\mathrm{1970}... \\ $$$$ \\ $$

Answered by mindispower last updated on 30/Sep/20

i) t=(1/x)⇒  i=∫^0 _∞ ((ln(t)dt)/(t^2 (((1+t^(√2) )/t^(√2) ))^(√2) ))=−∫_0 ^∞ ((ln(t)dt)/((1+t^(√2) )^(√2) ))   i=−i⇒i=0  ii)t=(1/x)  =∫_0 ^∞ ((t^(1+2(√2)) dt)/((t^(1+(√2)) +1)^(1+(√2)) ))  ∫_0 ^∞ ((t^(1+2(√2)) +t^(√2) )/((t^(1+(√2)) +1)^(1+(√2)) ))dt−∫_0 ^∞ (t^(√2) /((t^(1+(√2)) +1)^(1+(√2)) ))dt  I−J  I=∫_0 ^∞ (t^(√2) /((t^(1+(√2)) +1)^(√2) ))dt  t^(1+(√2)) =y⇒dy=(1+(√2))t^(√2)   =∫_0 ^∞ (dy/((1+(√2))(y+1)^(√2) ))=∫_0 ^∞ (1/((1+(√2))))(y+1)^(−(√2))   =[−(y+1)^(1−(√2)) ]_0 ^∞ =1  J,y=t^(1+(√2))   dt=(dy/(1+(√2)))  =∫_0 ^∞ (dy/((1+(√2))(y+1)^(1+(√2)) ))  =∫_0 ^∞ (1/(((√2)+1)))(y+1)^(−1−(√2)) dy  =[_0 ^∞ (((y+1)^(−1−(√2)) )/((1+(√2))(−(√2))))]=(1/( (√2)(1+(√2))))=(1/( (√2)))((√2)−1)  I−J=1−(1/( (√2)))((√2)−1)=(1/( (√2)))  iii) not nice ideas

$$\left.{i}\right)\:{t}=\frac{\mathrm{1}}{{x}}\Rightarrow \\ $$$${i}=\underset{\infty} {\int}^{\mathrm{0}} \frac{{ln}\left({t}\right){dt}}{{t}^{\mathrm{2}} \left(\frac{\mathrm{1}+{t}^{\sqrt{\mathrm{2}}} }{{t}^{\sqrt{\mathrm{2}}} }\right)^{\sqrt{\mathrm{2}}} }=−\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{t}^{\sqrt{\mathrm{2}}} \right)^{\sqrt{\mathrm{2}}} }\: \\ $$$${i}=−{i}\Rightarrow{i}=\mathrm{0} \\ $$$$\left.{ii}\right){t}=\frac{\mathrm{1}}{{x}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}} {dt}}{\left({t}^{\mathrm{1}+\sqrt{\mathrm{2}}} +\mathrm{1}\right)^{\mathrm{1}+\sqrt{\mathrm{2}}} } \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}} +{t}^{\sqrt{\mathrm{2}}} }{\left({t}^{\mathrm{1}+\sqrt{\mathrm{2}}} +\mathrm{1}\right)^{\mathrm{1}+\sqrt{\mathrm{2}}} }{dt}−\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\sqrt{\mathrm{2}}} }{\left({t}^{\mathrm{1}+\sqrt{\mathrm{2}}} +\mathrm{1}\right)^{\mathrm{1}+\sqrt{\mathrm{2}}} }{dt} \\ $$$${I}−{J} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\sqrt{\mathrm{2}}} }{\left({t}^{\mathrm{1}+\sqrt{\mathrm{2}}} +\mathrm{1}\right)^{\sqrt{\mathrm{2}}} }{dt} \\ $$$${t}^{\mathrm{1}+\sqrt{\mathrm{2}}} ={y}\Rightarrow{dy}=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){t}^{\sqrt{\mathrm{2}}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{dy}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left({y}+\mathrm{1}\right)^{\sqrt{\mathrm{2}}} }=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}\left({y}+\mathrm{1}\right)^{−\sqrt{\mathrm{2}}} \\ $$$$=\left[−\left({y}+\mathrm{1}\right)^{\mathrm{1}−\sqrt{\mathrm{2}}} \right]_{\mathrm{0}} ^{\infty} =\mathrm{1} \\ $$$${J},{y}={t}^{\mathrm{1}+\sqrt{\mathrm{2}}} \\ $$$${dt}=\frac{{dy}}{\mathrm{1}+\sqrt{\mathrm{2}}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{dy}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left({y}+\mathrm{1}\right)^{\mathrm{1}+\sqrt{\mathrm{2}}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}\left({y}+\mathrm{1}\right)^{−\mathrm{1}−\sqrt{\mathrm{2}}} {dy} \\ $$$$=\left[_{\mathrm{0}} ^{\infty} \frac{\left({y}+\mathrm{1}\right)^{−\mathrm{1}−\sqrt{\mathrm{2}}} }{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left(−\sqrt{\mathrm{2}}\right)}\right]=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$${I}−{J}=\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\left.{iii}\right)\:{not}\:{nice}\:{ideas} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 30/Sep/20

good very good  your  work is admirable..

$${good}\:{very}\:{good} \\ $$$${your}\:\:{work}\:{is}\:{admirable}.. \\ $$

Commented by mindispower last updated on 30/Sep/20

thank you have you   book for integral like the third one ?

$${thank}\:{you}\:{have}\:{you}\: \\ $$$${book}\:{for}\:{integral}\:{like}\:{the}\:{third}\:{one}\:? \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 30/Sep/20

book  advanced  murray  spiegel  is nice book

$${book} \\ $$$${advanced}\:\:{murray}\:\:{spiegel} \\ $$$${is}\:{nice}\:{book}\: \\ $$

Commented by mindispower last updated on 01/Oct/20

thank you  have you solution for the iii)please sir

$${thank}\:{you} \\ $$$$\left.{have}\:{you}\:{solution}\:{for}\:{the}\:{iii}\right){please}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com