Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 116365 by soumyasaha last updated on 03/Oct/20

Answered by Olaf last updated on 03/Oct/20

f(x) = Σ_(k=0) ^3 ((f^((k)) (a))/(k!))(x−a)^k +R_3 (x)  f^((0)) (a) = f((π/2)) = cos((π/2)) = 0  f^((1)) (a) = f^′ ((π/2)) = −sin((π/2)) = −1  f^((2)) (a) = f^′ ′((π/2)) = −cos((π/2)) = 0  f^((3)) (a) = f^′ ′′((π/2)) = sin((π/2)) = 1  f(x) = −(x−(π/2))+(((x−(π/2))^3 )/6)+R_3 (x)  ∃ ξ∈[0;2π]╲(π/2), R_3 (x) = ((f^((4)) (ξ))/(4!))(x−(π/2))^4   ∣R_3 (x)∣ ≤ ((∣f^((4)) (ξ)∣)/(4!))(x−(π/2))^4  ≤ (1/(24))(x−90°)^4   For x = 80° :  ∣R_3 (80°)∣ ≤ (1/(24))(10°)^4  = (1/(24))((π/(18)))^4   cos80° ≈ (π/(18))−(1/6)((π/(18)))^3 +(1/(24))((π/(18)))^4   cos80° ≈ 0,17369

$${f}\left({x}\right)\:=\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{3}} {\sum}}\frac{{f}^{\left({k}\right)} \left({a}\right)}{{k}!}\left({x}−{a}\right)^{{k}} +{R}_{\mathrm{3}} \left({x}\right) \\ $$$${f}^{\left(\mathrm{0}\right)} \left({a}\right)\:=\:{f}\left(\frac{\pi}{\mathrm{2}}\right)\:=\:\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}\right)\:=\:\mathrm{0} \\ $$$${f}^{\left(\mathrm{1}\right)} \left({a}\right)\:=\:{f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)\:=\:−\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\right)\:=\:−\mathrm{1} \\ $$$${f}^{\left(\mathrm{2}\right)} \left({a}\right)\:=\:{f}^{'} '\left(\frac{\pi}{\mathrm{2}}\right)\:=\:−\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}\right)\:=\:\mathrm{0} \\ $$$${f}^{\left(\mathrm{3}\right)} \left({a}\right)\:=\:{f}^{'} ''\left(\frac{\pi}{\mathrm{2}}\right)\:=\:\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\right)\:=\:\mathrm{1} \\ $$$${f}\left({x}\right)\:=\:−\left({x}−\frac{\pi}{\mathrm{2}}\right)+\frac{\left({x}−\frac{\pi}{\mathrm{2}}\right)^{\mathrm{3}} }{\mathrm{6}}+{R}_{\mathrm{3}} \left({x}\right) \\ $$$$\exists\:\xi\in\left[\mathrm{0};\mathrm{2}\pi\right]\diagdown\frac{\pi}{\mathrm{2}},\:{R}_{\mathrm{3}} \left({x}\right)\:=\:\frac{{f}^{\left(\mathrm{4}\right)} \left(\xi\right)}{\mathrm{4}!}\left({x}−\frac{\pi}{\mathrm{2}}\right)^{\mathrm{4}} \\ $$$$\mid{R}_{\mathrm{3}} \left({x}\right)\mid\:\leqslant\:\frac{\mid{f}^{\left(\mathrm{4}\right)} \left(\xi\right)\mid}{\mathrm{4}!}\left({x}−\frac{\pi}{\mathrm{2}}\right)^{\mathrm{4}} \:\leqslant\:\frac{\mathrm{1}}{\mathrm{24}}\left({x}−\mathrm{90}°\right)^{\mathrm{4}} \\ $$$$\mathrm{For}\:{x}\:=\:\mathrm{80}°\:: \\ $$$$\mid{R}_{\mathrm{3}} \left(\mathrm{80}°\right)\mid\:\leqslant\:\frac{\mathrm{1}}{\mathrm{24}}\left(\mathrm{10}°\right)^{\mathrm{4}} \:=\:\frac{\mathrm{1}}{\mathrm{24}}\left(\frac{\pi}{\mathrm{18}}\right)^{\mathrm{4}} \\ $$$$\mathrm{cos80}°\:\approx\:\frac{\pi}{\mathrm{18}}−\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\pi}{\mathrm{18}}\right)^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{24}}\left(\frac{\pi}{\mathrm{18}}\right)^{\mathrm{4}} \\ $$$$\mathrm{cos80}°\:\approx\:\mathrm{0},\mathrm{17369} \\ $$

Commented by soumyasaha last updated on 04/Oct/20

Thanks Sir.

$$\mathrm{Thanks}\:\mathrm{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com