Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117088 by mnjuly1970 last updated on 09/Oct/20

          ... advanced   calculus...           evsluate ::             I=∫_0 ^( ∞) ((xsin(2x))/(x^2 +4)) dx =?       hint:            Φ=∫_0 ^( ∞) ((cos(px))/(x^2 +1))dx =(π/2)e^(−p)     (p>0)            .m.n 1970

$$\:\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:\:{calculus}... \\ $$ $$ \\ $$ $$\:\:\:\:\:\:\:{evsluate}\::: \\ $$ $$\:\: \\ $$ $$\:\:\:\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{xsin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=? \\ $$ $$\:\:\:\:\:{hint}: \\ $$ $$\:\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left({px}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\:=\frac{\pi}{\mathrm{2}}{e}^{−{p}} \:\:\:\:\left({p}>\mathrm{0}\right)\:\:\: \\ $$ $$ \\ $$ $$\:\:\:\:\:.{m}.{n}\:\mathrm{1970} \\ $$ $$ \\ $$

Answered by mnjuly1970 last updated on 09/Oct/20

Φ =∫_0 ^( ∞)  ((cos(px))/(x^2 +1)) =_(respect  to  p) ^((diff  both sides)) (π/2)e^(−p )   =−∫_0 ^( ∞)  ((xsin(px))/(x^2 +1))dx=−(π/2)e^(−p)   =∫_0 ^( ∞)  ((xsin(px))/(x^2 +1))dx=(π/2)e^p   I =^(x=2t) ∫_0 ^( ∞) ((tsin(4t))/(t^2 +1))dt =^Φ  (π/2)e^(−4)      ..m.n.1970...

$$\Phi\:=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{cos}\left({px}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:\underset{{respect}\:\:{to}\:\:{p}} {\overset{\left({diff}\:\:{both}\:{sides}\right)} {=}}\frac{\pi}{\mathrm{2}}{e}^{−{p}\:} \\ $$ $$=−\int_{\mathrm{0}} ^{\:\infty} \:\frac{{xsin}\left({px}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}=−\frac{\pi}{\mathrm{2}}{e}^{−{p}} \\ $$ $$=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{xsin}\left({px}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}=\frac{\pi}{\mathrm{2}}{e}^{{p}} \\ $$ $$\mathrm{I}\:\overset{{x}=\mathrm{2}{t}} {=}\int_{\mathrm{0}} ^{\:\infty} \frac{{tsin}\left(\mathrm{4}{t}\right)}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}\:\overset{\Phi} {=}\:\frac{\pi}{\mathrm{2}}{e}^{−\mathrm{4}} \\ $$ $$\:\:\:..{m}.{n}.\mathrm{1970}... \\ $$ $$\: \\ $$ $$ \\ $$

Answered by Bird last updated on 10/Oct/20

2I =∫_(−∞) ^(+∞ )  ((xsin(2x))/(x^(2 ) +4))dx  =Im(∫_(−∞) ^(+∞)  ((xe^(2ix) )/(x^2  +4))dx) let  ϕ(z) =((z e^(2iz) )/(z^2  +4)) ⇒ϕ(z) =((ze^(2iz) )/((z−2i)(z+2i)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{Res(ϕ,2i)}  =2iπ ×((2i e^(−4) )/(4i)) =((−4π e^(−4) )/(4i)) =iπ e^(−4)   ⇒2I =π e^(−4)  ⇒I =(π/2)e^(−4)

$$\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty\:} \:\frac{{xsin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}\:} +\mathrm{4}}{dx} \\ $$ $$={Im}\left(\int_{−\infty} ^{+\infty} \:\frac{{xe}^{\mathrm{2}{ix}} }{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx}\right)\:{let} \\ $$ $$\varphi\left({z}\right)\:=\frac{{z}\:{e}^{\mathrm{2}{iz}} }{{z}^{\mathrm{2}} \:+\mathrm{4}}\:\Rightarrow\varphi\left({z}\right)\:=\frac{{ze}^{\mathrm{2}{iz}} }{\left({z}−\mathrm{2}{i}\right)\left({z}+\mathrm{2}{i}\right)} \\ $$ $$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{{Res}\left(\varphi,\mathrm{2}{i}\right)\right\} \\ $$ $$=\mathrm{2}{i}\pi\:×\frac{\mathrm{2}{i}\:{e}^{−\mathrm{4}} }{\mathrm{4}{i}}\:=\frac{−\mathrm{4}\pi\:{e}^{−\mathrm{4}} }{\mathrm{4}{i}}\:={i}\pi\:{e}^{−\mathrm{4}} \\ $$ $$\Rightarrow\mathrm{2}{I}\:=\pi\:{e}^{−\mathrm{4}} \:\Rightarrow{I}\:=\frac{\pi}{\mathrm{2}}{e}^{−\mathrm{4}} \\ $$

Commented bymnjuly1970 last updated on 10/Oct/20

grateful mr bird   very nice as always..

$${grateful}\:{mr}\:{bird}\: \\ $$ $${very}\:{nice}\:{as}\:{always}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com