Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 117493 by bobhans last updated on 12/Oct/20

∫_c (3xy−e^(sin x) )dx+(7x+(√(y^4 +1)) )dy  C : triangle with vertex (0,0),(0,1)  and (1,0)

$$\int_{\mathrm{c}} \left(\mathrm{3xy}−\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} \right)\mathrm{dx}+\left(\mathrm{7x}+\sqrt{\mathrm{y}^{\mathrm{4}} +\mathrm{1}}\:\right)\mathrm{dy} \\ $$$$\mathrm{C}\::\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{vertex}\:\left(\mathrm{0},\mathrm{0}\right),\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\mathrm{and}\:\left(\mathrm{1},\mathrm{0}\right) \\ $$

Answered by bemath last updated on 12/Oct/20

Green Theorem  ∫_c Pdx+Qdy=∫∫_D (Q_x −P_y )dxdy  =∫∫_D (7−3x)dxdy  =∫_0 ^1   ∫_0 ^(1−x)  (7−3x)dydx  = ∫_0 ^1 (7−3x)(1−x) dx  = ∫_0 ^1 (7−10x+3x^2 )dx  =[ 7x−5x^2 +x^3  ]_0 ^1  = 3

$$\mathrm{Green}\:\mathrm{Theorem} \\ $$$$\int_{\mathrm{c}} \mathrm{Pdx}+\mathrm{Qdy}=\int\int_{\mathrm{D}} \left(\mathrm{Q}_{\mathrm{x}} −\mathrm{P}_{\mathrm{y}} \right)\mathrm{dxdy} \\ $$$$=\int\int_{\mathrm{D}} \left(\mathrm{7}−\mathrm{3x}\right)\mathrm{dxdy} \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}−\mathrm{x}} {\int}}\:\left(\mathrm{7}−\mathrm{3x}\right)\mathrm{dydx} \\ $$$$=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{7}−\mathrm{3x}\right)\left(\mathrm{1}−\mathrm{x}\right)\:\mathrm{dx} \\ $$$$=\:\overset{\mathrm{1}} {\int}_{\mathrm{0}} \left(\mathrm{7}−\mathrm{10x}+\mathrm{3x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$=\left[\:\mathrm{7x}−\mathrm{5x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{3}} \:\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:\mathrm{3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com