Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 117574 by mnjuly1970 last updated on 12/Oct/20

        ... advanced  integral...          Evaluate ::                          I := ∫_0 ^( ∞) (( 4xln(x))/(x^4 +2x^2 +4 ))dx =??        ... m.n.1970..

$$\:\:\:\:\:\:\:\:...\:{advanced}\:\:{integral}... \\ $$$$\:\:\:\:\:\: \\ $$$$\mathscr{E}{valuate}\:::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{4}{xln}\left({x}\right)}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}\:}{dx}\:=??\: \\ $$$$\:\:\:\:\:...\:{m}.{n}.\mathrm{1970}.. \\ $$$$\: \\ $$

Answered by mindispower last updated on 12/Oct/20

x^2 =t⇒  I=∫_0 ^∞ ((ln(t))/(t^2 +2t+4))  t⇒2s⇒∫_0 ^∞ ((ln(2s).2ds)/(4(s^2 +s+1)))=∫_0 ^∞ ((ln(2)ds)/(2(s^2 +s+1)=I))+(1/2)∫_0 ^∞ ((ln(x))/(x^2 +x+1=J))  firstI basic  J =(1/2)∫_0 ^1 ((ln(x))/(x^2 +x+1))dx+(1/2)∫_1 ^∞ ((ln(x))/(x^2 +x+1))dx  x=(1/t) in 2nd ⇒dx=((−dt)/t^2 )  =(1/2)∫_1 ^0 ((ln(t))/(1+t+t^2 ))=−(1/2)∫_0 ^1 ((ln(x))/(1+x+x^2 ))  ⇒we have juste tofind  ∫_0 ^∞ ((ln(2)dx)/(x^2 +x+1)).(1/2)=((ln(2))/2)∫_0 ^∞ (dx/((x+(1/2))^2 +(3/4)))  =((2ln(2))/3)∫_0 ^∞  (dx/((((2x)/( (√3)))+(1/( (√3))))))=((ln(2))/( (√3)))[arctan(((2x)/( (√3)))+(1/( (√3))))]_0 ^∞   =((ln(2))/( (√3)))[(π/2)−(π/6)]=((πln(2))/( 3(√3)))

$${x}^{\mathrm{2}} ={t}\Rightarrow \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({t}\right)}{{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{4}} \\ $$$${t}\Rightarrow\mathrm{2}{s}\Rightarrow\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{2}{s}\right).\mathrm{2}{ds}}{\mathrm{4}\left({s}^{\mathrm{2}} +{s}+\mathrm{1}\right)}=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{2}\right){ds}}{\mathrm{2}\left({s}^{\mathrm{2}} +{s}+\mathrm{1}\right)={I}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}={J}} \\ $$$${firstI}\:{basic} \\ $$$${J}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left({x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$$${x}=\frac{\mathrm{1}}{{t}}\:{in}\:\mathrm{2}{nd}\:\Rightarrow{dx}=\frac{−{dt}}{{t}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\mathrm{0}} \frac{{ln}\left({t}\right)}{\mathrm{1}+{t}+{t}^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}+{x}^{\mathrm{2}} } \\ $$$$\Rightarrow{we}\:{have}\:{juste}\:{tofind} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{2}\right){dx}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}.\frac{\mathrm{1}}{\mathrm{2}}=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$=\frac{\mathrm{2}{ln}\left(\mathrm{2}\right)}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{3}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)}=\frac{{ln}\left(\mathrm{2}\right)}{\:\sqrt{\mathrm{3}}}\left[{arctan}\left(\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{3}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{{ln}\left(\mathrm{2}\right)}{\:\sqrt{\mathrm{3}}}\left[\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{6}}\right]=\frac{\pi{ln}\left(\mathrm{2}\right)}{\:\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 12/Oct/20

tayeballah  thank you so  much...

$${tayeballah}\:\:{thank}\:{you}\:{so} \\ $$$${much}... \\ $$

Commented by mindispower last updated on 14/Oct/20

withe?pleasur

$${withe}?{pleasur}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com