Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 117984 by Ar Brandon last updated on 14/Oct/20

If f(x) is a polynomial function satisfying the relation                             f(x)+f((1/x))=f(x)f((1/x))  for all 0≠x∈R and if f(2)=9, then f(6) is  (A) 216            (B) 217            (C) 126            (D) 127

$$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{function}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{relation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)={f}\left({x}\right){f}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{0}\neq{x}\in\mathbb{R}\:\mathrm{and}\:\mathrm{if}\:{f}\left(\mathrm{2}\right)=\mathrm{9},\:\mathrm{then}\:\mathrm{f}\left(\mathrm{6}\right)\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{216}\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{217}\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{126}\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{127} \\ $$

Answered by Ar Brandon last updated on 14/Oct/20

f(2)=9 therefore f(x) must be a non-zero polynomial.  Let f(x)=a_0 +a_1 x+a_2 x^2 +∙∙∙+a_n x^n , a_n ≠0  Suppose that f(x)+f((1/x))=f(x)f((1/x)) for all x≠0  Then Σ_(r=0) ^n a_r x^r +Σ_(r=1) ^n (a_r /x^r )=(Σ_(r=0) ^n a_r x^r )(Σ_(r=1) ^n (a_r /x^r ))  Multiplying through by x^n , we get that  Σ_(r=0) ^n a_r x^(n+r) +Σ_(r=0) ^n a_r x^(n−r) =(Σ_(r=0) ^n a_r x^r )(Σ_(r=0) ^n a_r x^(n−r) )  That is,  (a_0 x^n +a_1 x^(n+1) +∙∙∙a_n x^(2n) )+(a_0 x^n +a_1 x^(n−1) +∙∙∙+a_(n−1) x+a_n )        =(x^n +a_1 x^n +∙∙∙a_n x^n )(a_0 x^n +a_1 x^(n−1) +∙∙∙+a_(n−1) x+a_n )  Equating the corresponding coefficients of powers of x,  we have           a_n =a_0 a_n , a_(n−1) =a_0 a_(n−1) +a_1 a_n            a_(n−2) =a_2 a_n +a_1 a_(n−1) +a_(n−2) a_0            2a_0 =a_0 ^2 +a_n ^2             a_n =a_0 a_n ⇒a_0 =1 (since a_n ≠0)            a_(n−1) =a_0 a_(n−1) +a_1 a_n ⇒a_1 a_n =0⇒a_1 =0            a_(n−2) =a_2 a_n +a_1 a_(n−1) +a_(n−2) a_0 ⇒a_(n−2) =a_2 a_n +a_(n−2) ⇒a_2 =0  Continuing this process, we get that a_(n−1) =0 and 2=1+a_n ^2 .  Hence a_n =±1. Therefore                                                  f(x)=1±x^n   Since we are given that f(2)=9 we have                                    9=1±2^n   Therefore f(x) cannot be 1−x^n . Thus, f(x)=1+x^n  and  9=1+2^n  and hence n=3. So f(x)=1+x^3  and f(6)=217.

$${f}\left(\mathrm{2}\right)=\mathrm{9}\:\mathrm{therefore}\:{f}\left({x}\right)\:\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}-\mathrm{zero}\:\mathrm{polynomial}. \\ $$$$\mathrm{Let}\:{f}\left({x}\right)={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +\centerdot\centerdot\centerdot+{a}_{{n}} {x}^{{n}} ,\:{a}_{{n}} \neq\mathrm{0} \\ $$$$\mathrm{Suppose}\:\mathrm{that}\:{f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)={f}\left({x}\right){f}\left(\frac{\mathrm{1}}{{x}}\right)\:\mathrm{for}\:\mathrm{all}\:{x}\neq\mathrm{0} \\ $$$$\mathrm{Then}\:\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{\mathrm{r}} +\underset{\mathrm{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{\mathrm{r}} }{{x}^{\mathrm{r}} }=\left(\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{\mathrm{r}} \right)\left(\underset{\mathrm{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{\mathrm{r}} }{{x}^{\mathrm{r}} }\right) \\ $$$$\mathrm{Multiplying}\:\mathrm{through}\:\mathrm{by}\:{x}^{{n}} ,\:\mathrm{we}\:\mathrm{get}\:\mathrm{that} \\ $$$$\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{{n}+\mathrm{r}} +\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{{n}−\mathrm{r}} =\left(\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{\mathrm{r}} \right)\left(\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{{n}−\mathrm{r}} \right) \\ $$$$\mathrm{That}\:\mathrm{is}, \\ $$$$\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}+\mathrm{1}} +\centerdot\centerdot\centerdot{a}_{{n}} {x}^{\mathrm{2}{n}} \right)+\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} +\centerdot\centerdot\centerdot+{a}_{{n}−\mathrm{1}} {x}+{a}_{{n}} \right) \\ $$$$\:\:\:\:\:\:=\left({x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}} +\centerdot\centerdot\centerdot{a}_{{n}} {x}^{{n}} \right)\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} +\centerdot\centerdot\centerdot+{a}_{{n}−\mathrm{1}} {x}+{a}_{{n}} \right) \\ $$$$\mathrm{Equating}\:\mathrm{the}\:\mathrm{corresponding}\:\mathrm{coefficients}\:\mathrm{of}\:\mathrm{powers}\:\mathrm{of}\:{x}, \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\:\:\:\:\:\:\:\:\:{a}_{{n}} ={a}_{\mathrm{0}} {a}_{{n}} ,\:{a}_{{n}−\mathrm{1}} ={a}_{\mathrm{0}} {a}_{{n}−\mathrm{1}} +{a}_{\mathrm{1}} {a}_{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:{a}_{{n}−\mathrm{2}} ={a}_{\mathrm{2}} {a}_{{n}} +{a}_{\mathrm{1}} {a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} {a}_{\mathrm{0}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}{a}_{\mathrm{0}} ={a}_{\mathrm{0}} ^{\mathrm{2}} +{a}_{{n}} ^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}_{{n}} ={a}_{\mathrm{0}} {a}_{{n}} \Rightarrow{a}_{\mathrm{0}} =\mathrm{1}\:\left(\mathrm{since}\:{a}_{{n}} \neq\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}_{{n}−\mathrm{1}} ={a}_{\mathrm{0}} {a}_{{n}−\mathrm{1}} +{a}_{\mathrm{1}} {a}_{{n}} \Rightarrow{a}_{\mathrm{1}} {a}_{{n}} =\mathrm{0}\Rightarrow{a}_{\mathrm{1}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}_{{n}−\mathrm{2}} ={a}_{\mathrm{2}} {a}_{{n}} +{a}_{\mathrm{1}} {a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} {a}_{\mathrm{0}} \Rightarrow{a}_{{n}−\mathrm{2}} ={a}_{\mathrm{2}} {a}_{{n}} +{a}_{{n}−\mathrm{2}} \Rightarrow{a}_{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{Continuing}\:\mathrm{this}\:\mathrm{process},\:\mathrm{we}\:\mathrm{get}\:\mathrm{that}\:{a}_{{n}−\mathrm{1}} =\mathrm{0}\:\mathrm{and}\:\mathrm{2}=\mathrm{1}+{a}_{{n}} ^{\mathrm{2}} . \\ $$$$\mathrm{Hence}\:{a}_{{n}} =\pm\mathrm{1}.\:\mathrm{Therefore} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)=\mathrm{1}\pm{x}^{{n}} \\ $$$$\mathrm{Since}\:\mathrm{we}\:\mathrm{are}\:\mathrm{given}\:\mathrm{that}\:{f}\left(\mathrm{2}\right)=\mathrm{9}\:\mathrm{we}\:\mathrm{have} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{9}=\mathrm{1}\pm\mathrm{2}^{\mathrm{n}} \\ $$$$\mathrm{Therefore}\:{f}\left({x}\right)\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{1}−{x}^{{n}} .\:\mathrm{Thus},\:{f}\left({x}\right)=\mathrm{1}+{x}^{{n}} \:\mathrm{and} \\ $$$$\mathrm{9}=\mathrm{1}+\mathrm{2}^{{n}} \:\mathrm{and}\:\mathrm{hence}\:{n}=\mathrm{3}.\:\mathrm{So}\:{f}\left({x}\right)=\mathrm{1}+{x}^{\mathrm{3}} \:\mathrm{and}\:{f}\left(\mathrm{6}\right)=\mathrm{217}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com