Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 118242 by mathdave last updated on 16/Oct/20

solve  ∫_0 ^π ((xcosx)/((1+sin^2 x)))dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{{x}\mathrm{cos}{x}}{\left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} {x}\right)}{dx} \\ $$

Answered by TANMAY PANACEA last updated on 16/Oct/20

★∫((cosx)/(1+sin^2 x))dx=∫((d(sinx))/(1+sin^2 x))=tan^(−1) (sinx)★  now  ∫_0 ^π ((xcosx)/(1+sin^2 x))dx  ∣xtan^(−1) (sinx)∣_0 ^π −∫_0 ^π 1×tan^(−1) (sinx)dx  0−∫_0 ^π tan^(−1) (sinx)dx  f(x)=tan^(−1) (sinx)  f(0)=0  f(π)=0  so tan^(−1) (sinx)  make a loop in x∈ [0,π]  in between [0,π] tan^(−1) (sinx) must have maximum  value ...at x=(π/2)     tan^(−1) (sin(π/2))=(π/4)   ∫_0 ^π (π/4)dx>∫_0 ^π tan^(−1) (sinx)dx>0  (π^2 /4)>∫_0 ^π tan^(−1) (sinx)dx>0  (−1)(π^2 /4)<∫_0 ^π −tan^(−1) (sinx)dx<0  so I=∫_0 ^π ((xcosx)/((1+sin^2 x)))=∫_0 ^π −tan^(−1) (sinx)dx  ((−π^2 )/4)<I<0

$$\bigstar\int\frac{{cosx}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}{dx}=\int\frac{{d}\left({sinx}\right)}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}={tan}^{−\mathrm{1}} \left({sinx}\right)\bigstar \\ $$$${now} \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{{xcosx}}{\mathrm{1}+{sin}^{\mathrm{2}} {x}}{dx} \\ $$$$\mid{xtan}^{−\mathrm{1}} \left({sinx}\right)\mid_{\mathrm{0}} ^{\pi} −\int_{\mathrm{0}} ^{\pi} \mathrm{1}×{tan}^{−\mathrm{1}} \left({sinx}\right){dx} \\ $$$$\mathrm{0}−\int_{\mathrm{0}} ^{\pi} {tan}^{−\mathrm{1}} \left({sinx}\right){dx} \\ $$$${f}\left({x}\right)={tan}^{−\mathrm{1}} \left({sinx}\right) \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left(\pi\right)=\mathrm{0} \\ $$$${so}\:{tan}^{−\mathrm{1}} \left({sinx}\right)\:\:{make}\:{a}\:{loop}\:{in}\:{x}\in\:\left[\mathrm{0},\pi\right] \\ $$$${in}\:{between}\:\left[\mathrm{0},\pi\right]\:{tan}^{−\mathrm{1}} \left({sinx}\right)\:{must}\:{have}\:{maximum} \\ $$$${value}\:...{at}\:{x}=\frac{\pi}{\mathrm{2}}\:\:\:\:\:{tan}^{−\mathrm{1}} \left({sin}\frac{\pi}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{4}} \\ $$$$\:\int_{\mathrm{0}} ^{\pi} \frac{\pi}{\mathrm{4}}{dx}>\int_{\mathrm{0}} ^{\pi} {tan}^{−\mathrm{1}} \left({sinx}\right){dx}>\mathrm{0} \\ $$$$\frac{\pi^{\mathrm{2}} }{\mathrm{4}}>\int_{\mathrm{0}} ^{\pi} {tan}^{−\mathrm{1}} \left({sinx}\right){dx}>\mathrm{0} \\ $$$$\left(−\mathrm{1}\right)\frac{\pi^{\mathrm{2}} }{\mathrm{4}}<\int_{\mathrm{0}} ^{\pi} −{tan}^{−\mathrm{1}} \left({sinx}\right){dx}<\mathrm{0} \\ $$$${so}\:{I}=\int_{\mathrm{0}} ^{\pi} \frac{{xcosx}}{\left(\mathrm{1}+{sin}^{\mathrm{2}} {x}\right)}=\int_{\mathrm{0}} ^{\pi} −{tan}^{−\mathrm{1}} \left({sinx}\right){dx} \\ $$$$\frac{−\pi^{\mathrm{2}} }{\mathrm{4}}<{I}<\mathrm{0} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com